This may not be the latest edition.

AD2-I20-A043

Small Vibration Test Facility

Users' Manual

Advanced Engineering Services Co., Ltd.

本文書は、AD2-I20-A007「総合環境試験棟ユーザーズマニュアル(第8分冊)小型振動 試験設備編」初版を英訳したものであり、最新版であることは保証されていません。 英訳版を用いての設備利用検討に当たっては、以下の連絡先にお問い合わせの上、 最新情報をご確認ください。

tfcd rikatsu@aes.co.jp

This document was translated from first edition of AD2-I20-A007 "Small Vibration Test Facility Users' Manual", which may not be the latest edition. Please contact the following address for the confirmation of the latest edition or if you have any inquiry concerning the contents of the English edition.

tfcd_rikatsu@aes.co.jp

Table	of	Contents
	~	0.011001100

1	Intro	oduct	ion	1
2	Brie	f Ov	erview of this Facility	1
	2.1	Usa	ge Purposes and Features	1
	2.2	Syst	tem Outline and Functions	1
	2.2.	1	Shaking System	2
	2.2.2	2	Control/Measurement/Analysis System	3
	2.2.2	3	Supplementary Operation System	4
	2.3	Mai	n Specifications	8
	2.3.	1	Shaker and Related Equipment	8
	2.3.2	2	Control System	16
	2.3.	3	Data Measurement / Analysis System	18
	2.3.4	4	Supplementary Operation System	20
3	Use	r I/F		21
	3.1	Con	figurations in Small Vibration Test Room and Measurement/Control Room	21
	3.2	Dev	vice I/Fs	21
4	Exe	cutio	n of Tests	34
4.1 Test-related Work Procedure				
	4.2	Test	Procedure	37
	4.3	Des	ignation of Test Conditions	38
5	Spee	cial N	Notes	
	5.1	Cha	nging of Axes and Vibration Tables	
	5.2	2 Heat Run		
	5.3	Len	gth of Measurement Cables	
	5.4	Wea	aring Helmet	
	5.5	Cleanliness Control / Air Conditioning Conditions		
	5.6	5.6 Test Jig		
	5.7 Mounting on Shaker or Vibration Table			
	5.8 Protection of Test Room Floor			
	5.9 Opening/Closing of Shutters			
	5.10	Sec	urity Checking	42
	5.11	Eme	ergency Stop Switch	42
A	ppendix	ĸА	Test Conditions Requisition Sheet (to be submitted at K/O)	A-1
A	ppendix	ĸВ	Test Conditions Requisition Sheet (to be submitted at test)	B-1
A	ppendix	ĸС	Data Acquisition/Analysis Conditions Sheet	C-1
A	ppendix	хD	Example of Data Output	D-1

List of Figures

Figure 2-1 Bird's Eye View on Facility (shaker and its related equipment)	5
Figure 2-2 System Diagram	6
Figure 2-3 External Appearance of Control Room Systems	7
Figure 2-4 Definition of Rotary Axes	10
Figure 2-5 Maximum Acceleration (Unloaded Shaker)	11
Figure 2-6 Maximum Acceleration (Horizontal Vibration Table 483.48-16)	12
Figure 2-7 Maximum Acceleration (Vertical Vibration Table HEG24-63R-20)	13
Figure 2-8 Maximum Acceleration (Vertical Vibration Table AST-210VDM)	14
Figure 2-9 Maximum Acceleration (Unloaded Shaker: Transient Wave (Half Sine*))	15
Figure 2-10 Image of Displayed Content on Excitation State Display System	20
Figure 3-1 Measurement Sensor I/F of Measurement/Analysis System (acceleration)	21
Figure 3-2 Measurement Sensor I/F of Measurement/Analysis System (strain)	21
Figure 3-3 Configuration of Test Room and Measurement/Control Room	25
Figure 3-4 External Appearance of Unloaded Shaking System and Vertical Vibration Tab	ole in Use.26
Figure 3-5 Hole Pattern on Unloaded Shaker	27
Figure 3-6 Hole Pattern on Vertical Vibration Table (HEG24-63R-20)	
Figure 3-7 Hole Pattern on Vertical Vibration Table (AST-210VDM)	
Figure 3-8 External Appearance of Horizontal Vibration Table in Use	
Figure 3-9 Hole Pattern on Horizontal Vibration Table	
Figure 3-10 Configuration of Distribution Boards and Sockets	
Figure 3-11 Movable Range of Overhead Crane	
Figure 4-1 Test-related Work Flow	
Figure 4-2 Test Flow	
Figure 5-1 Definition of Rotary Axes on Vibration Tables	40

Appendix D

Figure D-1 Results of Excitation Control	D-2
Figure D-2 Drive Signals	D-2
Figure D-3 Acceleration Responses	D-3
Figure D-4 Transfer Function	D-3

List of Tables

1 Introduction

This users' manual is to provide necessary information to the users of Small Vibration Test Facility (referred to as "this facility" hereafter) located in Spacecraft Integration and Test Building.

2 Brief Overview of this Facility

2.1 Usage Purposes and Features

This facility is used for simulating the vibration environment on spacecraft imposed during launch, for the purposes of understanding its environmental resistance, dynamic characteristics, etc. It is capable of providing excitation force of up to 178.0 kN (18,163 kgf) in sine wave vibration, up to 178.0 kN rms (18,163 kgf rms) in random wave vibration, and up to 334.0 kN p-p (34,082 kgf) in transient wave vibration (SHOCK), and performing tests on spacecraft systems, subsystems, components, etc., weighing 2t or less.

The facility consists of a shaking system, a control/measurement/analysis system, a supplementary operation system, etc. The shaker, which is the core of the shaking system, is of an electrodynamic type, and comes in all-in-one with the horizontal vibration table. The movable parts of the shaker have no water-cooled piping, which helps reducing the risk of failures taking place during tests and therefore contributes on raising reliability. The control/measurement/analysis system, meanwhile, controls and monitors the shaker, and acquires vibration data at measurement points. Each channel has a real-time processing function and high throughput performance, which together support efficient performance of tests especially on spacecraft that require multi channels.

At the scenes of facility operation, each software and hardware is provided with its best-suited interlock mechanism, which enhances reduction of human errors and safe performance of tests.

2.2 System Outline and Functions

The outline and functions of this facility are explained below. Also, its schematic drawing and system diagram are shown in Figures 2-1 and 2-2, respectively.

2.2.1 Shaking System

The shaking system, which is made up of a shaker and its related equipment, a cooling system, and a power supply system, transmits vibration designated by a controller to a test specimen

(**■**abbreviated as TS hereafter). Each of the systems is explained below.

- (1) Shaker and related equipment
 - (a) Shaker

The shaker of this facility is of an electrodynamic type. It is characterized to have a light and strong inductor-ring-type armature which operates without cooling water. The shaker is supported by air pressure in vertical excitation, and by plate springs in horizontal excitation. Being turned by 90 deg, the shaker can provide excitation in both horizontal and vertical directions.

(b) Horizontal/vertical vibration tables

The vibration table system consists of a horizontal table, vertical tables, an oil supply device, etc. The vertical table is supported by a supporting structure, and its neutral position is retained by air pressure. The horizontal table, on the other hand, is support by the combination of the hydrostatic bearings placed on the surface plate and the oil film filling the spaces between the vibration table and the surface plate. The oil supply device supplies a necessary amount of hydraulic pressure to the hydrostatic bearings of the horizontal table.

(c) Base and damper, load distribution board

The base and damper mechanism holds the shaker and vibration tables the way unnecessary vibration is not directly transmitted to the facility foundation. By inserting an air-pressure damper between the base and the load distribution board, the transmission of load to the facility foundation is damped. The load distribution board supports the shaker, a vibration table, and the base, while distributing and transmitting load to the facility foundation built apart from the building.

(2) Cooling system

There are air-cooled type and water-cooled type cooling systems. The armature of the shaker is cooled by circulating air with a blower and furthermore spraying water to make use of the vaporization heat when necessary. The exciting coil of the shaker keeps equipment in an adequate temperature range by circulating cooled water for heat exchange.

(3) Power supply system

The system is composed of a power amplifier, a console rack (remote control unit), etc. The power amplifier supplies necessary power to the shaker up to the maximum output of 360 kVA. It has a protection circuit to protect a TS from exposure to excessive shock due to the sudden stop of a shaker in its emergency abort in the middle of excitation application. The console rack (remote control unit), meanwhile, enables the operation and monitoring of equipment from the control room.

2.2.2 Control/Measurement/Analysis System

The control/measurement/analysis system consists of a "control system", a "data measurement/analysis system", and the monitors and printers, etc. connected to individual devices. The "control system" denotes a device that controls the shaking system, being made up of a control system frontend (control signal input/output module), a controlling software, a controlling work station, an emergency abort switch, etc. The "data measurement/analysis system" denotes a device that acquires data from the measurement sensors mounted on a TS and performs analysis on it, being made up of a frontend (measurement signal input/output module), a software, a work station, for measurement and analysis, etc. Those two systems explained above are collectively called a "control/measurement/analysis system."

(1) Shaking controller

The shaking controller controls excitation spectrums, sweeps, notches, abort, etc., by transmitting control command signals to the shaker and its related equipment while receiving the feedback signals from a TS and the vibration tables. It can take in measurement signals from the vibration tables and a TS via up to 48 channels. After a test, such information as control levels, target function, output curves, etc., can be displayed on the monitor of the workstation and recorded.

(2) Data measurement/analysis system

The data measurement/analysis system measures and saves the vibration responses of a TS, being capable of dealing with voltage and charge signals of up to 224 channels. It can also perform real-time analysis on the measured data under the preset condition. The saved data can be subject to posttest analysis, e.g., sine wave, random wave, and transient wave (SHOCK), etc.

2.2.3 Supplementary Operation System

The supplementary operation system, consisting of an uninterruptible power supply, ITV cameras, and a vibration-exciter display panel, works as a supplementary and supportive facility for executing tests.

(1) Communication device

The device is used for mutual and simultaneous communications between and among test-concerned personnel in the test room or the measurement and control room. And individual workers can be addressed to from the speakers installed in the test room and the control room.

(2) ITV cameras

ITV devices monitor the states inside the test room and of a TS, displaying them on the monitor installed in the measurement and control room in real time. The captured images can be recorded in external memory media, e.g., BL/DVD disc, etc.

(3) Vibration-exciter display panel

The states of excitation during a test (test level, excitation frequency, excitation duration, etc.) is displayed on the panel installed in the test room, to help workers there get a handle on the excitation statuses. Other than that, users can put up the information they want to notify the workers in the test room on the panel.

Figure 2-1 Bird's Eye View on Facility (shaker and its related equipment)

Figure 2-2 System Diagram

Figure 2-3 External Appearance of Control Room Systems

2.3 Main Specifications

2.3.1 Shaker and Related Equipment

The specifications of the shaker and its related equipment in this facility are shown below.

- (1) Excitation system electrodynamic shaker
- (2) Frequency range $5 \sim 2,000$ Hz
 - * Some transient waves can achieve a test of up to 4,000Hz, which may differ depending on individual excitation waveforms and vibration tables; refer to Table 2-5 for more details.)
- (3) Vibration direction

vertical or horizontal

Table 2-1 Days Required for Axes Conversion

	required days
vertical \rightarrow horizontal	0.5
horizontal \rightarrow vertical	0.5

- (4) Vibration tables two vertical vibration tables (cf. Table 2-5 for details) one horizontal vibration table (cf. Table 2-5 for details)
 (5) Excitation waveform sine wave, random wave, transient wave (classical shock, shock synthesis)
 (6) Support for movable part neutral position retention by air springs horizontal and rotation direction control by mechanical springs
- (7) Excitation ability

Table 2-2 Excitation Ability	Table 2-2	2 Excitation	Ability
------------------------------	-----------	--------------	---------

	normal mode ^{*1}	high mode ^{*1}
sine wave	150.9 kN	178.0 kN
random wave*2	146.9 kN	178.0 kN
transient wave	275.6 kN	334.0 kN

*1 Either normal mode or high mode can be chosen depending on excitation specifications. The high mode allows the maximum excitation ability to be performed.

*2 The lowest limit frequency is to be 20Hz or higher in the maximum capable random wave excitation.

M1 + M2

(8) Maximum acceleration

The maximum accelerations of the unloaded shaker and of each vibration table are shown in Figures 2-5 \sim 2-9. (Prior checking is required when tests are performed around the maximum excitation ability.)

 $\alpha = F$

α: maximum acceleration (m/s²)
F: excitation ability (N or N rms)
M1: mass of movable part (kg)
(cf. Table 2-5 for details)
M2: mass of TS (kg)

(9) Maximum velocity

		J
	normal mode	high mode
sine wave	2.1 m/s 0-p	1.9 m/s 0-p
random wave	2.1 m/s 0-p	1.9 m/s 0-p
transient wave	3.5 m/s 0-p	3.1 m/s 0-p

Table 2-5 Maximum velocity	Table 2	2-3 Max	kimum V	/elocitv
----------------------------	---------	---------	---------	----------

(10) Maximum displacement

Table 2-4 Maximum Displacement			
	normal mode	high mode	
sine wave	43.1 mm p-p	38.0 mm p-p	
random wave	43.1 mm p-p	38.0 mm p-p	
transient wave	51.0 mm p-p	40.0 mm p-p	

Table 2-4 Maximum Displacement

(11) Minimum control level sine wave:	1.96 m/s ² (0.2G)
	random wave: 1.96 m/s ² rms (0.2 G rms)
(12) Noise level	1.96 m/s ² (0.2G) or less (unloaded)
(13) Magnetic flux leakage	4 mT (40 gauss) or less at 152 mm above the vibration plate
(14) Acceleration waveform strain	within 10% (within vibration frequency range, unloaded)
(15) Transverse motion	cf. Table 2-5
(crosstalk components)	
(16) Acceleration distribution	cf. Table 2-5

3.0 σ

(17) Sigma limit level

	unloaded vertical shaker	vertical vibration table		horizontal vibration table
vibration table		HEG24-63R-20	*3AST-210VDM	483.48-16
excitation frequency range	5 ~ 2,500Hz	5 ~ 2,000Hz	5 ~ 2,000Hz	5 ~ 2,000Hz
minimum fundamental frequency	2,000Hz	670Hz	1,000Hz	680Hz
mass of movable part	114 kg	614 kg	346 kg	409 kg
maximum load	1,818 kg	2,000 kg	1,586 kg	2,000 kg
	4,903 N∙m	16.9 kN∙m	4,903 N∙m	M _R 310 kN⋅m ^{*1} (31,633 kg⋅m)
(allowable) overturning moment	(500 kg·m)	(1,724 kg•m)	(500 kg•m)	$M_{P}310 \text{ kN} \cdot \text{m}^{*1}$ (31,633 kg·m) M _Y 16 kN·m ^{*1} (1.632 kg·m)
	20% or less	10% or less	10% or less	10% or less
	$(5 \sim 500 \text{Hz})$	$(5 \sim 100 \text{Hz})$	$(5 \sim 100 \text{Hz})$	$(5 \sim 300 \text{Hz})$
transverse motion ^{*2}	100% or less	20% or less	30% or less	25% or less
(crosstalk)	$(500 \sim 2.000 \text{Hz})$	$(100 \sim 500 \text{Hz})$	$(100 \sim 500 \text{Hz})$	$(300 \sim 500 \text{Hz})$
[reference value]	(000 2,000112)	(100 000112)	150%以下	
			(500 ~ 2,000Hz)	
	within ±5%	within ±10%	within ±5%	within ±5%
	(5 ~ 500Hz)	(5 ~ 300Hz)	(5 ~ 200Hz)	5 ~ 150Hz
acceleration distribution*2	within ±20%	within ±50%	within ±20%	within ±20%
[reference value]	(500 ~ 1,000Hz)	300 ~ 500Hz	(200 ~ 500Hz)	150 ~ 300Hz
	within ±100%		within ±250%	within ±50%
	(1,000 ~ 2,000Hz)		(500 ~ 2,000Hz)	300 ~ 500Hz
dimensions	about 0.6 mø	about 1.6 mq	about 1.1 mφ	about $1.2 \times 1.2m$
	cf. Figure 3-5 for more	cf. Figure 3-6 for more	cf. Figure 3-7 for more	cf. Figure 3-9 for
	details	details	details	more details

Table 2-5 Specifications of Vibration Tables

*1 The directions of M_R , M_P , and M_Y are shown in the following Figure.

- *2 The figures denote the reference values of unloaded statuses. That is, the values change depending on the positions of control points and the geometries of a TS and a jig. The acceleration distribution ranges specified in the table can be exceeded especially when the CG offset and overturning moment of a TS are large, even when the moment is within the level allowed by the facility.
- *3 AST-210VDM is shared by the 18t Vibration Test Facility.

Figure 2-4 Definition of Rotary Axes


```
Figure 2-5 Maximum Acceleration (Unloaded Shaker)
```


Note) The maximum loadable acceleration may be unachievable depending on test waves and levels; users are therefore to perform prior checking.

```
Figure 2-6 Maximum Acceleration (Horizontal Vibration Table 483.48-16)
```



```
Figure 2-7 Maximum Acceleration (Vertical Vibration Table HEG24-63R-20)
```


Note) The maximum loadable acceleration may be unachievable depending on test waves and levels; users are therefore to perform prior checking.

```
Figure 2-8 Maximum Acceleration (Vertical Vibration Table AST-210VDM)
```

(Reference) Transient Wave (Shock) Test Performance Curve

The performance curves of a shaker in transient waves (shock) are shown below. <u>The levels here are to be</u> considered as reference values, because shock tests adopting an instantaneous pulse can be easily influenced by a <u>TS</u>, jig, etc., making it difficult to judge if a test can be conducted solely based on a performance curve.

Users are to discuss the possibility of conducting a test for the specified test conditions and configurations with the facility-side personnel in advance.

Figure 2-9 Maximum Acceleration (Unloaded Shaker: Transient Wave (Half Sine*))

* Prepulse and postpulse: +12% and -24%, except for 11-ms waveform for which postpulse is to be set at +12% and -30%.

2.3.2 Control System

The specifications of the excitation control system in this facility are shown below.

(1) Common

The common specifications among control systems for different waveforms, e.g., data output, format, etc., are shown in Table 2-6.

item	specification
data output	target spectrum, upper/lower limit alarm, upper/lower limit abort, transfer function, frequency spectrum averaged among control channels, frequency spectrum of each control channel, frequency spectrum, error spectrum, results of each analysis
output data format	outputtable to universal file, MATLAB format, Excel format (CSV format)

Table 2-6 Common Basic Performance among Control Systems

(2) Sine wave

The basic performance of the control system for sine wave sweep tests is shown in Table 2-7.

item	specification
input channel	48 channels (total of excitation control channels and targeted limit channels for test)
control strategy	average / maximum / minimum level
calculation method for control levels	One of harmonic (tracking filter), RMS level, peak level, and average level, is chosen.
excitation frequency range	range between 0.05Hz ~ 40,000Hz
sweep method	linear sweep (0.001 ~ 400 Hz/Sec), logarithmic sweep (0.001 ~ 400 Oct/Min)
sweep direction	UP, Down, sequential UP/Down, sequential Down/Up
targeted control levels	fixed displacement, fixed velocity, fixed acceleration, acceleration-acceleration (slope)
protection function	control alarm / abort, limit abort, detection of open channels, abort by external signals, manual abort, channel overload
kinds of analysis data	frequency spectrum, transfer function, time history waveform

Table 2-7 Basic Performance of Control System (sine wave)

(3) Random wave

The basic performance of the control system for random vibration tests is shown in Table 2-8.

•	· · · · · · · · · · · · · · · · · · ·
item	specification
input channel	48 channels (total of excitation control channels and targeted limit channels for test)
control strategy	average / maximum / minimum level
frequency resolution	100, 200, 400, 800, 1,600, 3,200 lines (up to 12,800 lines)
output waveform	pure random wave, or repeated random wave
drive clipping	2σ ~ 5σ
excitation frequency range	range between 0.025 ~ 40,000Hz
targeted control levels (setting of limits)	fixed acceleration, acceleration-acceleration (slope)
protective function	control alarm / abort, limit abort, detection of open channels, abort by external signals, manual abort, channel overload
kinds of analysis data	power spectrum density (PSD), transfer function, time history waveform, auto power spectrum

Table 2-8 Basic Performance of Control System	(random wave)
Table 2-0 Dasie I citor mance of Control System	(1 a m u 0 m w a v c)

(4) Transient wave (classical shock, shock synthesis)

The specifications of the control system for tests adopting transient waves (classical shock, shock synthesis) are shown in Table 2-9.

item	specification
input channel	control: 1 channel, measurement: 47 channels
excitation frequency range	in the range for DC-20,000Hz according to control waveforms
control waveform	classical shock: one of half sine wave, saw-tooth wave, trapezoidal wave, rectangular wave, and sine burst, is to be chosen.
protective function	control abort, detection of open channels, abort by external signals, manual abort, protective function for channel overload
excitation frequency range	range between 0.025 ~ 40,000Hz
kinds of analysis data	power spectrum density (PSD), transfer function, time-series waveform, auto power spectrum, SRS, are output
SRS analysis	For the Amplitude selection, one of Positive (Max. positive), Negative (Max. Negative), and Absolute (Maxi-Max), is to be chosen. An octave band width is also to be arbitrarily set.

Table 2-9 Basic Performance of Con	trol System (transient wave)

2.3.3 Data Measurement / Analysis System

The specifications of the shaking controller in this facility are shown below.

(1) Common

The common specifications among all the measurement/analysis functions, e.g., data output, formatting of output data, etc., are shown in Tables 2-10 and 2-11.

item	specification
analysis channel	192 channels (16 chs of them can be backed up by a recorder which belongs to the facility.)
input terminal	microdot (miniature) connector
compatible sensors	electric charge type acceleration sensor, voltage type acceleration sensor (supported by TEDS format) other voltage output sensors
input range	voltage: ±316 mV, ±1V, ±3.16V, ±10V electric charge: ±316 pC, ±1000 pC, ±3,160 pC, ±10,000 pC %In addition to the ranges above, the backup-supported 16 chs correspond to the ranges below. ±31,600 pC (64 kHz), ±100,000 pC (20 kHz), ±316,000 pC (6.4 kHz)
maximum input	voltage: 28 Vrms / electric charge: ±500,000 pC
input impedance (voltage)	$1 \text{ M}\Omega / 260 \text{ pF} (1 \text{ M}\Omega/50 \text{ pF} \text{ for the backup-supported 16 chs})$
output results	The results and conditions of each type of analysis can be output on the screen or into a file.
output data format	outputtable to a universal file, the MATLAB format, or the Excel format (CSV format)

Table 2-10 Basic Perform	nance of Measurement/Analys	sis System (for accele	ration measurement)
	1		

Table 2-11 Basic Performance of Measurement/Analysis System (for strain measurement)

item	specification	
analysis channel	32 channels	
·	7-pin LEMO, Pigtail	
input terminal	coaxial BNC (only for voltage signals)	
	strain gauge (DC-bridge, AC-bridge), AC linear voltage differential transformer	
compatible sensors	(AC-LVDT), potentiometer, voltage type acceleration sensor (compatible with TEDS), other	
	voltage output sensors	
	bridge mode: $\pm 31.6 \text{ mV}, \pm 100 \text{ mV}, \pm 1 \text{ V}, \pm 10 \text{ V}$	
input range	other than above: $\pm 10V$	
maximum input	voltage: 28 Vrms	
alias-free frequency	5,000Hz	
· 1	bridge mode: 1 M Ω //20 pF	
input impedance	other than above: $1 M\Omega / 50 pF$	
gauge resistance	120Ω / 350Ω	
	DC: 4-gauge method (full bridge), 2-gauge method (half bridge)	
bridge	1-gauge method (quarter bridge)	
	AC: 4-gauge method (full bridge), 2-gauge method (half bridge)	
	1-gauge method (quarter bridge), electromagnetic induction half bridge, AC-LVDT	

(2) Sine wave

The basic performance of the measurement/analysis system for sine-wave sweep tests is shown in Table 2-12.

item	specification
analysis frequency range	range between 0.05 – 20,000Hz
analysis method	One of harmonic (tracking filter), RMS level, peak level, and average level, is chosen.
kinds of analysis data	frequency spectrum, transfer function, time history waveform

 Table 2-12 Basic Performance of Measurement/Analysis System (sine wave)

(3) Random wave

The basic performance of the control system for random vibration tests is shown in Table 2-13.

item	specification
window function	Window function necessary for analysis (including Hanning) can be adopted.
overlap processing	Overlap processing can be adopted. The amount of overlap can be arbitrarily chosen.
Degrees of freedom for analysis	The degrees of freedom (■DOF hereafter) for analysis can be arbitrarily set.
number of average operations for analysis	The number of average operations for analysis can be arbitrarily set.
frequency resolution	100, 200, 400, 800, 1,600, 3,200 lines (up to 12,800 lines)
frequency range for analysis	range between 0.01 – 80,000Hz
kinds of analysis data	power spectrum density (PSD), transfer function, time history waveform, auto power spectrum

Table 2-13 Basic	Performance	of Measurement	/Analysis Sys	tem (random wave)
Tuble a 10 Duble	I citor manee	or measurement	ar and you by b	(i unuom mute)

(4) Transient wave (classical shock, shock synthesis)

The specifications of the measurement/analysis system for tests adopting transient waves (classical shock, shock synthesis) are shown in Table 2-14.

Table 2-14 Basic Performance	of Measurement/Analy	vsis System	(shock wave)
Tuble 2 I i Duble I ci tor munee	of measurements internet	you by seem	(BHOCK Wave)

item	specification
analysis frequency range	in the range for DC-1 MHz
kinds of analysis data	power spectrum density (PSD), transfer function, time-series waveform, auto power spectrum, SRS
SRS analysis	For the Amplitude selection, one of Positive (Max. positive), Negative (Max. Negative), and Absolute (Maxi-Max), is to be chosen. An octave band width and a quality factor (damping) are also to be arbitrarily set.

2.3.4 Supplementary Operation System

The specifications of the utility equipment in this facility are explained below.

(1) Communication device

This device enables mutual and simultaneous communications between and among test-concerned personnel during the operation of this facility or the preparatory work on a TS, etc. There are headsets prepared, and up to three of them are available to users. In case more are needed, ex-ante adjustment is to be made.

(2) ITV devices

Two color cameras are installed in the test room to monitor the on-going status of a TS during a test. Their images are displayed (zoomed, panned, and rotated by a controller) on the two-color monitors in the measurement and control room. Furthermore, the images can be recorded/replayed by the specific hard disc for that purpose or a BL/DVD recorder, or copied on BL/DVD-RWs.

Max. recording time: about 400 hrs (500 GB hard disc) about 20 hrs (25 GB Blue-ray) about 4 hrs (4.7 GB DVD-RW)

file format: MPEG-2, MPEG-4 AVC

(3) Excitation state display system

This system reads in the control signals output from the control system, and displays the on-going excitation states of a test on the 60-inch panel in the test room on a real-time basis. In addition to the test statuses, the panel shows other information, e.g., frequency for sine wave vibration and elapsed time for random wave vibration. Being a monitor itself, it has functions as a general display.

Figure 2-10 Image of Displayed Content on Excitation State Display System

3 User I/F

3.1 Configurations in Small Vibration Test Room and Measurement/Control Room

The configurations in the test room and the measurement/control room are shown in Figure 3-3. The cleanliness level inside the test room is kept to satisfy ISO class 8 (class 100,000.)

3.2 Device I/Fs

(1) Hole patterns

The hole patterns on the unloaded shaker and each vibration table are shown in Figures $3-4 \sim 3-9$ for the purpose of mounting a TS on a test system. If a test jig for an I/F is necessary between a vibration table and a TS, the bolts, etc., for mounting the jig are to be prepared by users.

- (2) Measurement/analysis system
 - (a) Acceleration measurement

The acceleration sensors mounted on a TS are to be connected to the frontend for data measurement/analysis in the test room via low-noise cables. The connectors are microdot (miniature) connectors.

Figure 3-1 Measurement Sensor I/F of Measurement/Analysis System (acceleration) (left: normal measurement module 8 chs \times 22 modules, right: backup module 4 chs \times 4 modules)

(b) Strain measurement

The strain gauges mounted on a TS are to be connected to the measurement/analysis front end in the test room. The connector for the front end is the 7-pin LEMO-FGB.0B.307.CLAD. The conversion cables for the LEMO-Pigtail (3m) are also applicable.

Figure 3-2 Measurement Sensor I/F of Measurement/Analysis System (strain)

(3) I/F for carrying in/out TS

A TS, if it is small enough, can be carried in/out to/of the air shower room (the size of the air shower room: 700 (W) \times 900 (D) \times 1,900 (H)) via hand carry. As for the matters related to the carriage of a large-size TS from the unpacking room in the Spacecraft Integration and Test Building into the test room, refer to "vol. 1 Common Matters (GCA-02006)" of "Users' Manual for Spacecraft Integration and Test Building."

(4) Test room crane

The specifications of the crane in the small vibration test room are shown below. When the crane is used, the ceiling shutter shown in the next item is to be kept open. Also, it is to be confirmed before using the crane that the temperature, humidity, and cleanliness outside the test room satisfy their reference values. The movable range of the crane hook is shown in Figure 3-11.

aanaaitu	velocity (low/high)				height below hook	hook size
capacity	model #	travel	traverse	hoist	(m)	(mm)
						A: 90
2,800 kg	X-Y	1/10	1/10	0.8/8	16.5	B: 63
						C: 45

Table 3-1 Specifications of Crane in Small Vibration Test Room

velocity: (m/min)

(5) Test room shutter

Pay attention to the temperature/humidity and cleanliness outside the test room when opening the shutters for using the crane, etc. When a TS is carried in and out of the test room, both the shutter facing the satellite path and the one on the loading dock shown in Figure 3-3 are to be left open. As with the case of using the crane, it is to be confirmed before carrying in/out a TS that the temperature/humidity and cleanliness inside and outside the test room satisfy their reference values.

Dimensions of shutter facing satellite path:	8.3m (width)	\times	14m (height)
Dimensions of loading dock shutter:	5.8m (width)	\times	7.0m (height)
Dimensions of ceiling shutter:	4.5m (width)	\times	9.0m (length)

(6) Items related to power supplies

The configuration of distribution boards and sockets available to users is shown in Figures 3-10, while the information of the distribution boards is provided in Table 3-2.

		name	<u></u>	SL-1	
				small vibration facility	
		installation site	measurement/co	ontrol room	
		specifications of breaker			
No.	number of phases \times voltage	rating	capacity (kVA)	sign of breaker	notes
1	3φ×200V	MCB2P 50 / 20AT		①, ②	spare
2	1φ×100V	MCB2P 50 / 20AT	20 kVA	1 ~ 10	Extension codes connected to those breakers are available to users.
	1φ×100V	MCB2P 50 / 20AT		(1) ~ (14)	spare
	t	ype of earth wire		type C, type D	
		name		SP-1	
installation site				small vibration facility measurement/control room	
	5	specifications of breaker			
No.	number of phases × voltage	rating	capacity (kVA)	sign of breaker	notes
1	$3\phi \times 210V$	ELB3P 50 / 20AT	_	\Diamond	spare
2	$3\phi \times 210V$	MCB3P 50 / 30AT		\$	Extention codes connected to those breakers are available to users.
3	$3\phi \times 210V$	MCB3P 50 / 20AT			Extention codes connected to those breakers are available to users.
4	$3\phi \times 210V$	MCB3P 50 / 20AT			spare
	t	ype of earth wire	type C		

Table 3-2 Distribution Boards for Users

(7) Emergency abort button

The application of excitation can be aborted (soft stop) in the middle of its operation by pressing the emergency abort button in the test room whenever abnormalities are found. The basic rule in general cases, however, is that our operator in the test facility presses the emergency abort button in the control room. Users who want to be prepared for emergency abort using the button in the test room are to make ex-ante adjustment with our facility operator concerning how to operate it, etc.

area	withstand load
test room	8,700 N/m ^{2*}
measurement/ control room	32,000 N/m ²

* excluding the 100-mm-wide area surrounding the load distribution board (covered by rubber)
 Figure 3-3 Configuration of Test Room and Measurement/Control Room

The bolt pattern of the shaker is shown in the attached sheet.

Figure 3-4 External Appearance of Unloaded Shaking System and Vertical Vibration Table in Use

Figure 3-5 Hole Pattern on Unloaded Shaker

Figure 3-6 Hole Pattern on Vertical Vibration Table (HEG24-63R-20)

Figure 3-7 Hole Pattern on Vertical Vibration Table (AST-210VDM)

Figure 3-8 External Appearance of Horizontal Vibration Table in Use

Figure 3-9 Hole Pattern on Horizontal Vibration Table

Figure 3-10 Configuration of Distribution Boards and Sockets (Small Vibration Test Room, Measurement/ Analysis Room)

Figure 3-11 Movable Range of Overhead Crane

4 Execution of Tests

4.1 Test-related Work Procedure

The flow of test-related work procedure is shown in Figure 4-1. The work sequence, etc., is explained below.

(1) Kickoff meeting

A kickoff meeting is held to confirm test purposes, contents, schedule, conditions, etc. Users are to prepare a "test implementation plan", a "test conditions requisition sheet (to be submitted at K/O)", etc.

(2) Rental of acceleration sensors, etc.

Users can rent acceleration sensors and low-noise cables to be used for tests from the facility. In that case, make arrangements in advance and clarify your request in a test implementation plan, etc. The acceleration sensors and low-noise cables for controlling are basically prepared by the facility. If users wish to prepare them by themselves, let us know of it beforehand.

(3) Task briefing (pre-test meeting)

A task briefing is held for the final checking on test contents and the status of facilities, etc., in preparation for performing a test. Its main purpose is to discuss the changes made after the kickoff meeting.

(4) Installation of TS

When opening the shutter to the satellite path, it is to be made sure that the cleanliness in the external room of the test room is under control. Pay attention to the withstand load of the work floor, etc., during the installation of a TS into the facility.

(5) Mounting of acceleration sensors

The work of mounting acceleration sensors for measurement on a TS is basically to be executed in the Small Vibration Test Room.

(6) Excitation of jig

Upon users' request, the staff of the Agency checks the safety of the vibration property of the test jig prepared by users, before a test is performed on a TS. In that case, the jig is excited following the same procedures as in the actual test on the TS.

(7) Mounting of TS

When mounting a TS onto a vibration table, pay full attention not to damage the shaker and the equipment installed around the vibration table.

(8) Actual excitation

A test is performed on a TS. Users are to prepare a "test conditions requisition sheet." Refer to section 4.2 for the work sequence of a vibration test.

(9) Changing of axes/vibration tables

After providing the actual excitation to either vertical or horizontal direction, the axes and the vibration tables are switched to the other excitation direction. The procedures from (6) to (9) are then repeated as designated for the test.

(10) Task review (post-test meeting)

The final evaluation on the achievements of test purposes is performed at the end of the test. Users are to prepare a "newsboard" or the like which binds together the test results of a TS, to check for the achievement of test purposes.

(11) Removal of TS and cleaning of test room

When carrying a TS out of the test room, pay close attention to the open/close states of the shutters. Also, users are to clean the test room or other areas used during the test after the removal of a TS.

(12) Saving and transference of test data

The data acquired during a test is recorded in DVD and kept by the facility. Users who wish to keep the electronic data of the test are to prepare external memory medium of their own.

Figure 4-1 Test-related Work Flow

4.2 Test Procedure

The test procedure is shown in Figure 4-2, and each work in the operation sequence is explained below.

- (1) Setting of test parameters
 - Each parameter for the shaking controller is set based on the test conditions requisition sheet.
- (2) Tap checking

A test jig is tapped with a plastic hammer, etc., to confirm the normal response of the acceleration sensors mounted on a TS and the facility controlling sensors.

(3) Activation of high voltage power supplies for horizontal/vertical devices, and damper

The high voltage power supplies for the horizontal/vertical devices are activated. Furthermore, compressed air is introduced into the airbags of the damper to uplift and separate the base from the load distribution board.

(4) Start of self-checking (loop checking)

Low-level excitation is loaded in the tested excitation frequency band to confirm the health of the control loop. While limit control cannot be performed during loop checking, the upper excitation level can be manually preset to the shaker when overload is anticipated.

(5) Checking of signals

Measurement signals are checked on the monitors of the data measurement/analysis system.

(6) Start of full test and data acquisition

A full test (the actual excitation) is started. At the same time, the data measurement/analysis system starts acquiring the test data of the TS.

(7) End of test/data acquisition

The test ends when the pre-set excitation is completed. Simultaneously, the data measurement/analysis system stops acquiring the test data of a TS.

(8) Data analysis

The test data of the measurement points on the TS is analyzed and evaluated.

(9) Cutoff of high voltage power supplies for horizontal/vertical devices, and stoppage of damper The high voltage power supplies for horizontal/vertical devices are cut off. In addition to that, air is let out from the airbags of the damper to land the base back onto the load distribution board.

Figure 4-2 Test Flow

4.3 Designation of Test Conditions

Users are to submit a "test conditions requisition sheet" as follows so that a vibration test can be smoothly performed without errors.

Test Conditions Requisition Sheet

(1) Excitation conditions requisition sheet

An "excitation conditions requisition sheet" is to be filled in with vibration test level conditions and submitted prior to the test date.

(2) Data acquisition database list

A "data acquisition database list" is to be filled in with the measurement conditions for measurement points and submitted prior to the test date.

(3) Data acquisition/analysis conditions sheet

A "data acquisition/analysis conditions sheet" is to be filled in with the data acquisition and analysis conditions for measurement points and submitted prior to the test date.

5 Special Notes

Especially important matters to take into account for performing a vibration test in this facility are shown below.

5.1 Changing of Axes and Vibration Tables

To shift excitation axes, the axes of the shaker are to be switched. The days to achieve that purpose are shown below. Take the listed time into account when planning a test schedule. When the replacement of vertical vibration tables are being planned, furthermore, time required for the replacement is also to be included in the schedule.

	approximate required days
vertical \rightarrow horizontal	0.5
horizontal \rightarrow vertical	0.5
replacement of vertical vibration tables	0.5

Table 5-1 Approximate Days Required for Changing Axes and Vibration Tables

5.2 Heat Run

The heat run time necessary for this facility is about 30 minutes after the activation of power. That time is to be included when planning a test schedule.

5.3 Length of Measurement Cables

The measurement and analysis front end to which cables for acceleration/strain measurement are connected is located at about 2m away from the horizontal vibration table, and about 6m away from the vertical vibration table. Therefore, especially when executing vertical excitation tests, attention is required to the length of a low-noise cable, which is to be at least 6 m plus the distance between the shaker and a TS.

5.4 Wearing Helmet

The TS observers, etc., in the test room are to wear a helmet (to be prepared by users) during crane operations and a test.

5.5 Cleanliness Control / Air Conditioning Conditions

The cleanliness in the test room is controlled to keep ISO class 8 (class 100,000.) Therefore, users are to wear a clean garment (to be prepared by users) when entering the room. Meanwhile, the test room is air-conditioned to keep the temperature of $23^{\circ}C \pm 3^{\circ}C$ and the humidity of $30\% \sim 60\%$.

5.6 Test Jig

The test jig prepared by users is to be manufactured based on the following points in mind.

(1) Natural frequency

The minimum fundamental frequency is to be more than four times the upper-limit frequency for a test. That condition, however, does not have to be strictly met when the increased mass of a jig interferes with the execution of the test.

(2) CG position

A jig and a TS are basically to be symmetrical in shape, and the CG position of the two combined is to be as close as possible to the center of the vibration table used in a test. When the resultant CG position unavoidably deviates largely from the center of the vibration table, the CG position is to be adjusted using a "counter weight", etc., so that the overturning moment of a TS does not exceed the allowable overturning moment of each vibration table. The necessary counter weights are to be prepared by users.

The following show the idea of overturning moment.

vibration table	overturning moment conditions			
vertical*1	$M > W \times A \times Oxy$	+	W×A×Txy×Oz	
	$Mp \ > \ W\!\!\times\!\!A\!\!\times\!\!Oz$	+	W×A×Tz×Oy	
horizontal	$Mr > W \times A \times Tz \times Ox$	+	W×A×Tx×Oz	
	My > W×A×Ox	+	W×A×Tx×Oy	

 Table 5-2 Overturning Moment Conditions

- M^{*2} : Vertical vibration table allowable overturning moment [N·m]
- Mp^{*2} : Horizontal vibration table allowable overturning moment (pitch axis) [N·m]
- Mr^{*2} : Horizontal vibration table allowable overturning moment (roll axis) [N·m]
- My^{*2} : Horizontal vibration table allowable overturning moment (yawing axis) [N·m]
- W : Summed mass of a TS and a jig [kg]
- A : Maximum acceleration $[m/s^2]$
- T^{*2} : Transverse (crosstalk) factor [%] (the subscripts x, y, z denote the directions of transverse motion.)
- O^{*3} : the CG offset volume from the center of the vibration table [m] (the subscripts x,y,z denote offset directions^{*4}
- *1 When using a vibration table, its mass and CG position are to be taken into the above equations.
- *2 Refer to Table 2-5 "Specifications of Vibration Tables" for the values of allowable overturning moment and transverse.
- *3 The axes directions of the vibration tables are shown below.

Figure 5-1 Definition of Rotary Axes on Vibration Tables

*4 The X and Y axes are not distinguished on a vertical vibration table, and therefore Oxy denotes the distance from the center of the vibration table on the XY plane. For further information, contact the Test Facilities Administration Room.

(3) Flatness of test jig

When mounting a test jig on a shaker, vertical/horizontal vibration table, the I/F plane of the jig to the vibration table is to be manufactured the way it has a flatness of within 0.1 mm/m. When a jig is made of steel, etc., machining on its surface or application of a spacer between the table and itself are required to get rid of bending torque on the shaker or a vibration table. The latter means, however, lacks in repeatability and therefore the former method is more recommendable.

5.7 Mounting on Shaker or Vibration Table

Keep the following matters in mind when mounting a jig, etc., on a shaker or a vibration table.

(1) Attachment bolt

The bolts necessary for mounting a jig are to be prepared by users. Those bolts are to be made of metal other than stainless steel (high-tensile bolts are recommended), and the tightening torque is to be based on the following table.

fixed posi	tightening torque	
movable parts of un	88.0 N•m or	
movable parts of an	iouded shaker	less
horizontal vibration t	56.0 N•m or	
norizontai vibration t	less	
		56.0 N•m or
wantical with notion table	HEG24-03K-20	less
vertical vibration table	AST 210UDM	68.6 N•m or
	AS1-210VDM	less

Table	5-3	Tightening	Torque
Lance	~ ~	1 ISHCOMINS	IUIque

(2) Timing of mounting jig and TS

A jig or/and a TS is to be mounted after the oil supply device and the air compressor of this facility are activated.

(3) Application of crane

The crane (2.8t) of this facility is to be operated by personnel who have the designated crane operator's license. Anybody who uses the crane is to keep records of its usage history in the designated registry.

(4) Connecting cables for strain gauge

Shield wires are to be used as the connecting cables for strain gauges.

5.8 Protection of Test Room Floor

The floor of this test room is made of a material that causes little contamination, whose surface has a possible drawback of being fragile to shock loaded upon it. Therefore, users are to abide by the following directions. In case any condition comes out to interfere with the abidance of them, contact the Test Facilities Administration Room in advance to take measures for it.

- (1) It is forbidden to use a dolly with steel wheels for carrying heavy things such as a TS, jigs, etc.
- (2) The floor is to be cured in advance to protect its surface from being damaged by the shock due to dropped tools, etc.

5.9 Opening/Closing of Shutters

When carrying in/out a TS, or using a crane, etc., check up on the display of the thermohydrometer placed in the control room to see if the air-conditioning is working in the external room of the test room. Shutters can be opened and closed when the temperature and humidity are more or less equal inside and outside the test room. Otherwise, the shutters are to be kept closed.

5.10 Security Checking

When transferring data back and forth with this facility, it is necessary to put the external recording medium to be used through virus checking with the latest version of checking software prior to its application. Also, the information of all the data transferences is to be tracked and recorded on the "table of records for data transference via medium" and submitted to the Test Facilities Administration Room.

5.11 Emergency Stop Switch

When using the emergency stop switch in the test room in the middle of excitation application, be aware not to give a shock to the switch box, because that may activate the emergency stop interlock installed in the facility.

Appendix A

Test Conditions Requisition Sheet (to be submitted at K/O)

Small Vibration Test Facility Test Conditions Requisition Sheet

(to be Submitted at K/O)

 \Box COMMON

 \Box SINE

 \Box RANDOM

 \Box CLASSICAL SHOCK

□ SHOCK SYNTHESIS

 \Box SINE BURST

Small Vibration Test Facility Test Conditions Requisition Sheet (to be submitted at K/O)

COMMON

test name				notes	
TS name					
number of control chs			ch(s)	up to 4 chs	
number of limit chs			ch(s)	up to (48 - number of control chs) chs	
number of measurement chs	charge: voltage:	ch(s) / strain: ch(s)	ch(s)	224 chs or less in total (up to 192 chs for charge signals, up to 32 chs for strain)	
excitation direction	X axis	□vertical	□horizontal		
$(Check \square either vertical)$	Y axis		□horizontal		
or horizontal.)	Z axis	□vertical	□horizontal		
vibration table		□unloaded shaker		Max. load mass: 1,818 kg	
(Check☑ the model #	vertical	□HEG24-63R-20		cf. φ1.6m, Max. load mass: 2,000 kg	
of the vibration table to		□AST-210VDM		cf. φ1.1m, Max. load mass: 1,586 kg	
be used.)	horizontal	□483.48-16		cf. □1.2×1.2m, Max. load mass: 2,000 kg	
environmental requirements for TS in clean room	temperature: humidity: cleanliness:			[air conditioning conditions in test room (reference)] temperature: 23±3°C humidity: 45±15% cleanliness: ISO class 8 (CLASS100,000)	
TS mass	kg		Maximum load mass is to be determined		
jig mass	kg		based on the specifications of the vibration table.		
	$X = + \cdot -$		mm	CG position is to be of a TS and a jig	
CG position	$\mathbf{Y} = + \mathbf{\cdot} -$		mm	combined (from the center on the upper	
	$Z = + \cdot -$	mm		plane of the vibration table.)	
	□RANDOM	□PSD/time histor □transfer function □time history way □auto power spec	y waveform n/coherence veform etrum		
excitation waveform and analysis condition	□SINE (□up / □down)	□acceleration resp □transfer function □time history way	oonse 1 veform	Check I the targeted excitation / analysis methods.	
	□SHOCK	PSD/SRS transfer function time history way autopower spect	rum		
video recording (Check⊠ either one.)	□necessa	ry • □not	necessary		

SINE

	setting of control parameters		notes
Max. frequency		Hz	
Min. frequency		Hz	frequency range: 5 ~ 2,000Hz
start frequency		Hz	
sweep direction	□Up □Down		Check☑ either one.
sweep mode	□Linear □Log		Check☑ either one.
number of sweeps		time(s)	Set the number of excitation cycles. ex. Set "2" for sequential Up/Down sweep.
sweep rate	□Oct/min	• □Hz/sec	generally 1 ~ 4 Oct/min for spacecraft

setting of control levels							
frequency Hz	acceleration (m/s ²) (G)	velocity m/s	half amplitude m0-p	upper limit alarm level +dB	lower limit alarm level -dB	upper limit abort level +dB	lower limit abort level -dB
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-

RANDOM

	setting of control parameters	notes
Max. frequency	Hz	frequency report 5 - (2 000)
Min. frequency	Hz	frequency range: 5,~2,000Hz
test time	: :	hh : mm : ss
frequency resolution	Hz	

setting of control levels							
overall RMS			m/s ² rms	(Grms)		
frequency Hz	level (m/s ²) ² /Hz	left inclination dB/oct	right inclination dB/oct	upper limit alarm leve: +dB	lower limit alarm leve: -dB	upper limit abort leve: +dB	lower limit abort leve: -dB
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-
				+	-	+	-

SHOCK SYNTHESIS

setting of control parameters		notes
number of full-level output pulses	time(s)	range: 1~1,000,000,000 times
Min. frequency for analysis	Hz	range: DC ~ Max. frequency
Max. frequency for analysis	Hz	range: Min. frequency ~ 102.4 kHz

setting of control levels				
frequency Hz	amplitude m/s ²	tolerance (-allowable range) (-dB) range: -100 ~ 0dB	tolerance (+allowable range) (+dB) range: 0 ~ 100dB	
		-	+	
		-	+	
		-	+	
		-	+	
		-	+	
		-	+	
		-	+	
		-	+	
		-	+	
		-	+	

CLASSICAL SHOCK

setti	ng of control parameters	ntoes
number of full-level output pulses	time(s)	range: 1 ~ 1,000,000 times
duration (pulse width)	ms	range: 0.01 or more Max. pulse width depends on pulse amplitudes.
amplitude (Max. amplitude)	m/s ²	Max. pulse amplitude depends on vibration tables.
pulse type	□Half Sine □Rectangular □Terminal Peak Sawtooth □Triangle □Initial Peak Sawtooth □Trapezoidal	Check \square the pulse type to be applied in a test.

SINE BURST

settii	ng of control parameters	notes
number of full-level output pulses	time(s)	range: 1 ~ 1,000,000 times
frequency	Hz	
amplitude (Max. amplitude)	m/s ²	
number of cycles	time(s)	

Example of Test Conditions Requisition Sheet (to be submitted at K/O) COMMON

No.	item	explanation	notes
1	Test name	Fill in the space with the name of the test the way its content can be understood.	
2	TS name	Fill in the space with the name of the TS.	
3	Number of control chs	Set the number of control channels.	up to 4 chs
4	Number of limit chs	Fill in the space with the number of limit control channels.	up to (48chs - number of control chs)
5	Number of measurement chs	Fill in the space with the number of measurement channels.	electric charge: up to 192 chs bridge: up to 32 chs voltage: up to (224 chs – number of chs for electric charge and bridge)
6	Excitation direction	Choose which one of the three axes of a TS corresponds to the excitation direction. (Check one of the alternatives.)	
7	Vibration table	Choose the model number of the vibration table to be used for vertical/horizontal excitation. (Check one of the alternatives).	
8	Environmental requirements for TS in clean room	Fill in the space with the air-conditioning conditions inside the test room.	
9	TS mass	Fill in the space with the mass of a TS.	Refer to the maximum load
10	Jig mass	Fill in the space with the mass of a jig.	mass of the vibration table.
11	CG position	Fill in the space with the CG position of a TS and a jig combined (from the center on the upper plane of the vibration table.)	
12	Excitation waveform and analysis condition	Choose the excitation waveform from RANDOM, SINE (UP, DOWN, sequential UP/DOWN), and SHOCK. (Check one of the alternatives.)	
		Choose the analysis condition for the chosen excitation waveform from the alternatives in the box to the right. (Check one of the alternatives.)	
13	Video recording	Choose whether or not to shoot and record the state of a TS during a test with the ITV cameras installed in the test room.	

SH (E			
No.	item	explanation	notes
	setting of control parameters		
1	Max. frequency	Set the Max. frequency.	2,000Hz or lower
2	Min. frequency	Set the Min. frequency.	5Hz or higher
3	Start frequency	Set the frequency at which excitation starts to be applied.	
4	Sweep direction	Choose the sweep-starting direction. (Check either one.)	
5	Sweep mode	Choose an excitation sweep mode. (Check either one.) Linear: linear sweep Log: logarithmic sweep	
6	Number of sweeps	Set the number of sweeps.	"1" for either UP or DOWN "2" for sequential UP/DOWN
7	Sweep rate	Set the sweep rate and choose the unit (Check either one.)	for log sweep mode: ☑[Oct/min] for linear sweep mode: ☑[Hz/sec]
	setting of control levels	An example of setting control levels is shown below.	
8	Frequency Hz	Set the frequencies at breakpoints on an excitation pattern.	
9	Acceleration	control over fixed acceleration (m/s^2) (G)	
10	Velocity	control over fixed velocity (m/s)	
11	Displacement	control over fixed displacement (mm _{p-p})	
12	Lower limit abort level –dB	Set the minus abort level.	
13	Upper limit abort level +dB	Set the plus abort level.	

SINE

Example of Setting Control Levels SINE

The excitation pattern	as above, fo	r example, can	be specified	as follows.
------------------------	--------------	----------------	--------------	-------------

frequency Hz	acceleration m/s ² (G)	velocity m/s	half amplitude m _{0-p}	upper limit alarm level + dB	lower limit alarm level - dB	upper limit abort level + dB	lower limit abort level - dB
5			0.00635	+3	-3	+6	-6
(24.2)	147.1 (15G)		0.00635	+3	-3	+6	-6
50	147.1 (15G)			+3	-3	+6	-6
60	73.6 (7.5G)			+3	-3	+6	-6
100	73.6 (7.5G)			+3	-3	+6	-6

RANDOM

No.	item	explanation	notes
	setting of control parameters		
1	Max. frequency	Set the Max. frequency.	2,000Hz or lower
2	Min. frequency	Set the Min. frequency.	5Hz or lower
3	Test time	Set the full level test time.	hh : mm : ss
4	Frequency resolution	Set the frequency resolution.	The number of sampling frequencies and the number of lines are automatically calculated according to the frequency resolution and excitation frequency.
	setting of control levels	An example of setting control levels is shown below.	
5	Overall RMS	Fill in the space with the RMS of the pre-set excitation pattern.	
6	Frequency Hz	Set the frequencies at breakpoints on an excitation pattern.	The number of breakpoints is up to 98.
7	Level (m/s ²) ² /Hz (G ² /Hz) Left inclination dB/oct Right inclination dB/oct	Set the PSD level or the gradient of slope in terms of $\pm dB$ from breakpoints.	
8	Lower limit abort level -dB	Set the minus abort level.	
9	Upper limit abort level +dB	Set the plus abort level.	

Example of Setting Control Levels RANDOM

The excitation pattern	as above, for	example, can	be specified	as follows.
------------------------	---------------	--------------	--------------	-------------

setting of control levels							
overall RMS		m/s ² rms (Grms)					
frequency Hz	level (m/s²)²/Hz	left inclination dB/oct	right inclination dB/oct	upper limit alarm level: + dB	lower limit alarm level: - dB	upper limit abort level: + dB	lower limit abort level: - dB
20			3	+3	-3	+6	- 6
80	3.85 (0.04 G ² /Hz)			+3	-3	+6	- 6
350	3.85 (0.04 G ² /Hz)			+3	-3	+6	- 6
2,000		-3		+3	-3	+6	- 6

SHOCK SYNTHESIS

No.	item	explanation	notes
	setting of control		
	parameters		
1	Number of full level	Set the number of full level output	$1 \sim 1.000.000.000$ times
-	pulses	pulses.	1 1,000,000,000 0
2	Min. frequency for	Set the lower-limit frequency for	DC ~ Max frequency
-	analysis	measurement and analysis.	De Max. nequency
3	Max. frequency for	Set the upper-limit frequency for	Min. frequency ~ 102.4
5	analysis	measurement and analysis.	kHz
	setting of control levels		
4	Frequency Hz	Set the frequencies at breakpoints.	
5	Amplitude m/s ² (G)	Set the pulse amplitude.	
c	Laft inclination dD/act	Set the gradient of slope in terms of	
0	Left inclination dB/oct	\pm dB from breakpoints.	
7	Dight ingligation dD/g at	Set the gradient of slope in terms of	
/	Right inclination dB/oct	\pm dB from breakpoints.	
Q	Tolerance	Sat the minus tolerance range	range: 100 0 dP
0	(allowable range) (- dB)	Set the minus tolerance range.	range100 \sim 0 dB
0	Tolerance	Set the plus tolerence rence	mm age 0 100 dD
9	(allowable range) (+ dB)	Set the plus tolerance range.	range: $0 \sim 100 \text{ dB}$

CLASSICAL SHOCK

No.	item	explanation	notes
	setting of control parameters		
1	Number of full level pulses	Set the number of full level output pulses.	1 ~ 1,000,000,000 times
2	Duration	Set the pulse width.	0.01 ~ one determined by Max. freq.
3	Amplitude	Set the pulse amplitude.	Max. pulse amplitude depends on vibration tables.
4	Pulse type	Choose the pulse type to be applied in a test. (Check one of the alternatives.)	

SINE BURST

No.	item	explanation	notes
	setting of control parameters		
1	Number of full level pulses	Set the number of full level output pulses.	1 ~ 1,000,000,000 times
2	Frequency	Set the frequency for burst waves.	
3	Amplitude	Set the pulse amplitude for burst waves.	Max. pulse amplitude depends on vibration tables.
4	Number of cycles	Set the number of cycles for burst waves.	

Appendix B Test Conditions Requisition Sheet (to be submitted at test)

Small Vibration Test Facility Test Conditions Requisition Sheet

(to be submitted at test)

Excitation Conditions Requisition Sheet

- \Box SINE
- □ RANDOM
- □ CLASSICAL SHOCK
- \Box SHOCK SYNTHESIS
- \Box SINE BURST

Data Acquisition/Analysis Conditions Sheet

- \Box RESPONSE CURVE ANALYSIS
- □ PSD / AUTO POWER SPECTRUM
- □ TRANSFER FUNCTION ANALYSIS /
 - COHERENCE
- \Box SRS
- □ TIME HISTORY WAVEFORM

Data Acquisition Database List

 \Box ACCELERATION

□ STRAIN

Excitation Conditions Requisition Sheet (1)

Test Specimen Name
Test Name

issu	ıe №		
date	e of issue		
issu	ed by		
	final	check	
	TS	OP	

example

CONTROL PARAMETERS (setting of control parameters)

Test name (name of test in alphanumerics)		xyz_pft
Number of control channels	ch(s)	4 chs
Frequency resolution	□Lines/Oct □Hz	100 ☑Lines/Oct
Min. frequency (lower limit frequency for excitation)	Hz	5 Hz
Max. frequency (upper limit frequency for excitation)	Hz	100 Hz
Control estimation (calculation method for amplitude of each channel)	□Rms □Harmonic □Peak □Average	☑Harmonic
Control strategy	□Average □Maximum □Minimum	☑Average

MEASUREMENT PARAMETERS (setting of measurement parameters – limit –) example

Number of measurement channels		ch(s)	32 chs
Reference channel	No.	ch	1 ch
Measurement estimator	□Rms □Peak □THD	□Filter □Average	⊠Rms
Measure FRF (setting of function measurement)	□Spectrum	□Spectrum + FRF	⊠Spectrum

Note) Due to the operation of this facility, "(G)" is 9.80665 m/s² in SI unit.

Excitation Conditions Requisition Sheet (2)

SINE

Test Specimen Name
Test Name

issue №	
date of issue	
issued by	

example

SWEEP PARAMETERS (setting of sweep parameters)

Start up time (time to take for starting up)	sec	10 sec
Shut down time (time to take for shutting down)	sec	5 sec
Sweep mode (mode of sweep rate)	□Log □Linear	⊠Log
Sweep rate	□Oct/min □Hz/sec	4 ☑Oct/min
Start frequency (excitation-starting frequency)	Hz	5 Hz
Sweep direction (setting of sweep-starting direction)	□Up □Down	₩Up
Number of sweeps	time(s)	1 time
Compression factor (compression speed)		4
Activate recording (time-series saving of control data)	□Yes □No	☑Yes (save)
Over sampling factor (the sampling factor for measurement)	Control Sampling ×	1

Excitation Conditions Requisition Sheet (3)

SINE

Test Specimen Name
Test Name

issue № date of issue issued by

Channel Setup (setting of control/measurement channels)

No.	group ID	point	direction	input mode	measured quantity	actual sensitivity	sensor ID
1	-	Tacho1	None	\checkmark Voltage DC / \Box AC \Box ICP / \Box Charge			
2	Control	CTRL1	+X	□Voltage DC /□AC □ICP /□Charge			
3	Control	CTRL2	+X	\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
4	Control	CTRL3	+X	□Voltage DC /□AC □ICP /□Charge			
5	Control	CTRL4	+X	□Voltage DC /□AC □ICP /□Charge			
6				□Voltage DC /□AC □ICP /□Charge			
7				□Voltage DC /□AC □ICP /□Charge			
8				□Voltage DC /□AC □ICP /□Charge			
9				□Voltage DC /□AC □ICP /□Charge			
10				□Voltage DC /□AC □ICP /□Charge			
11				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
12				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
13				\Box Voltage DC / \Box AC			
14				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
15				\Box Voltage DC / \Box AC			
16				$\Box Voltage DC / \Box AC$			
17				$\Box Voltage DC / \Box AC$			
18				$\Box Voltage DC / \Box AC$			
19				$\Box Voltage DC / \Box AC$			
20				$\Box Voltage DC / \Box AC$			
21				$\Box Voltage DC / \Box AC$			
22				□Voltage DC /□AC			
23				□Voltage DC /□AC			
24				UICP/UCharge			
25				UICP / Charge			
25				□ICP /□Charge □Voltage DC /□AC			
26				\Box ICP / \Box Charge			

27	\Box Voltage DC / \Box AC
27	□ICP /□Charge
28	\Box Voltage DC / \Box AC
20	□ICP /□Charge
20	\Box Voltage DC / \Box AC
23	□ICP /□Charge
30	\Box Voltage DC / \Box AC
50	□ICP /□Charge
31	\Box Voltage DC / \Box AC
51	□ICP /□Charge
32	\Box Voltage DC / \Box AC
52	□ICP /□Charge
33	\Box Voltage DC / \Box AC
	□ICP /□Charge
3/	\Box Voltage DC / \Box AC
<u> </u>	□ICP /□Charge
35	\Box Voltage DC / \Box AC
	□ICP /□Charge
36	\Box Voltage DC / \Box AC
50	□ICP /□Charge
37	\Box Voltage DC / \Box AC
57	□ICP /□Charge
38	\Box Voltage DC / \Box AC
	□ICP /□Charge
39	\Box Voltage DC / \Box AC
	□ICP /□Charge
40	\Box Voltage DC / \Box AC
	□ICP /□Charge
41	\Box Voltage DC / \Box AC
	□ICP /□Charge
42	\Box Voltage DC / \Box AC
	□ICP /□Charge
43	\Box Voltage DC / \Box AC
44	UVoltage DC / LAC
45	\Box Voltage DC / \Box AC
46	UVoltage DC / LAC
47	UVoltage DC / LAC
48	\Box Voltage DC / \Box AC
49	\Box Voltage DC / \Box AC
	LICP /LICharge

examp	le						
No.	group ID	point	direction	input mode	measured quantity	actual sensitivity	sensor ID
1	Control	Panel_1	+Y	□Voltage DC /□AC □ICP /☑Charge	Acceleration	1.2991 pC/(m/s ²)	XY1234
2	Measure	ACP_1	-X	□Voltage DC /□AC ☑ICP /□Charge	Acceleration	1.1 mV/(m/s ²)	AX2345
3	Control	PIU_2	+Z	✓Voltage DC /□AC □ICP /□Charge	Force	0.203 mV/N	ZZ3456

Excitation Conditions Requisition Sheet (4) SINE

issue №	
date of issue	
issued by	

Test S	Specimen	Name
	-	

Test Name

EXCITATION PATTERN DIAGRAM (reference)

REFERENCE PROFILE (setting of control levels)

frequency Hz	acceleration m/s ² (G)	velocity m/s	half amplitude m _{0-p}	upper limit alarm level + dB	lower limit alarm level - dB	upper limit abort level + dB	lower limit abort level - dB

example

5		0.00635	+3	-3	+6	-6
(24.2)	147.1 (15G)	0.00635	+3	-3	+6	-6
50	147.1 (15G)		+3	-3	+6	-6
60	73.6 (7.5G)		+3	-3	+6	-6
100	73.6 (7.5G)		+3	-3	+6	-6

Note) Due to the operation of this facility, "(G)" is 9.80665 m/s² in SI unit.

Excitation Conditions Requisition Sheet (5) SINE

Test Specimen Name

Test Name

Notching Profile (setting of notching profile)

PROFILE TABLE Channe			el ID	[]
No	frequency	acc	սլ	pper abort
NO	(Hz)	(m/s^2)	(dB)	
1				
2				
3				
4				
5				
Min. frequency*				Hz
	Max. frequer	ncy*		Hz

PROFILE TABLE Channe			el ID	[]
No	frequency	acc	սլ	oper abort
INU	(Hz)	(m/s^2)		(dB)
1				
2				
3				
4				
5				
	Min. frequen	icy*		Hz
	Max. frequer	ncy*		Hz

PROFILE TABLE Channe			el ID	[]
No	frequency	acc	սլ	oper abort
INO	(Hz)	(m/s^2)		(dB)
1				
2				
3				
4				
5				
Min. frequency*				Hz
	Max. frequer	ncy*		Hz

PROFILE TABLE Channe			el ID	[]
No	frequency (Hz)	acc (m/s ²)	սլ	oper abort (dB)
1				
2				
3				
4				
5				
Min. frequency*				Hz
	Max. frequer	ncy*		Hz

issue № date of issue issued by

			(1	No. /)
PRO	FILE TABLE	Channe	l ID	[]
No	frequency	acc	ι	ipper abort	
NO	(Hz)	(m/s ²)		(dB)	
1					
2					
3					
4					
5					
	Min. frequen	icy*		Hz	2
	Max. frequer	ncy*		Hz	S

PRO	FILE TABLE	Channe	1 ID	[]
No	frequency	acc	ι	upper abort	
NO	(Hz)	(m/s ²)		(dB)	
1					
2					
3					
4					
5					
	Min. frequen	icy*		Hz	
	Max. frequer	ncy*		Hz	

PROFILE TABLE Channel			1 ID	[]
No	frequency	acc	ι	pper abor	t
No	(Hz)	(m/s^2)			
1					
2					
3					
4					
5					
Min. frequency*				Н	[z
	Max. frequer	ncy*		Н	[z

PRO	FILE TABLE	Channe	1 ID	[]
No	frequency	acc	ι	apper abort	
NO	(Hz)	(m/s^2)		(dB)	
1					
2					
3					
4					
5					
Min. frequency*				H	Z
	Max. frequer	ncy*		H	Z

* Fill in the blanks with "—" if Minimum/ Maximum Frequencies as control parameters coincide with those of notching.

This may not be the latest edition.

Notching Profile (setting of notching profile)

PROFILE TABLE Channe			el ID	[]
No	frequency	acc	սլ	oper abort
	(HZ)	(m/s²)		(dB)
1				
2				
3				
4				
5				
Min. frequency*				Hz
	Max. frequer	ncy*		Hz

PROFILE TABLE Channe			el ID	[]
No	frequency	acc	սլ	oper abort
INO	(Hz)	(m/s^2)		(dB)
1				
2				
3				
4				
5				
	Min. frequen	icy*		Hz
	Max. frequer	ncy*		Hz

PROFILE TABLE Channe			el ID	[]
No	frequency	acc	սլ	oper abort
110	(Hz)	(m/s^2)		(dB)
1				
2				
3				
4				
5				
Min. frequency*				Hz
Max. frequency*				Hz

PROFILE TABLE Channe			el ID	[]
No	frequency	acc	սլ	oper abort
INU	(Hz)	(m/s^2)		(dB)
1				
2				
3				
4				
5				
Min. frequency*				Hz
Max. frequency*				Hz

			(No.	/)
PRO	FILE TABLE	Channe	1 ID	[]
No	frequency (Hz)	acc (m/s ²)	uppe (c	r abort lB)	
1					
2					
3					
4					
5					
Min. frequency*				Hz	
	Max. frequen	ncy*		Hz	

PROFILE TABLE Channel		1 ID	[]	
No	frequency	acc	ι	upper abort	
INO	(Hz)	(m/s^2)		(dB)	
1					
2					
3					
4					
5					
Min. frequency*			Hz		
Max. frequency*			Hz		

PROFILE TABLE Channe		1 ID	[]	
No	frequency	acc	ι	upper abort	
INO	(Hz)	(m/s^2)		(dB)	
1					
2					
3					
4					
5					
Min. frequency*				Hz	
Max. frequency*			Hz		

PROFILE TABLE Channel ID		1 ID	[]	
No	frequency	acc	ι	ipper abort	
INO	(Hz)	(m/s^2)		(dB)	
1					
2					
3					
4					
5					
Min. frequency*				Hz	
Max. frequency*				Hz	

* Fill in the blanks with "—" if Minimum/ Maximum Frequencies as control parameters coincide with those of notching.

Example of Excitation Conditions Requisition Sheet **SINE**

No.	item	explanation	parameter range	example
	< Excitation Conditions			
	Requisition Sheet $(1) >$			
1	Test name	Fill in the space with an ID	with only alphanumerics	xyz_pft
-		that distinguishes the test.		
2	Number of control	Set the number of control	$1 \sim 4 \text{ chs}$	4 chs
2	channels	channels.		100
3	Frequency resolution	Set the frequency	for log sweep mode: lines/Oct	100 Dimos/Ost
4	Min fraguency	resolution.	for linear sweep mode: HZ	∠lines/Oct
4	Min. frequency	excitation frequency hand	SHZ OF Higher	JIIZ
5	Max frequency	Set the upper limit of	2 kHz or lower	100Hz
· ·		excitation frequency band.		100112
6	Control estimation	Choose a calculation	Choose one from Rms, Harmonic,	
		method for amplitude of	Peak, and Average.	Harmonic
		each channel.		
7	Control strategy	Choose an excitation	Choose one from Average,	Average
		control method.	Maximum, and Minimun.	
8	Number of measurement	Set the number of	$1 \sim 48$ chs (including control	32 chs
	channels	measurement channels on	channels.)	
0	Poforance channel	the controller side.	Choose one from $abs 1 = 48$ as the	1 ob
9	Reference channel	channel number for	reference channel and choose either	1 CII
		calculating spectrum and	Drive or Average as the calculation	
		FRF.	method.	
10	Measurement estimator	Choose a method of	Choose one from Rms, Filter, Peak,	⊠Rms
		obtaining amplitude.	Average, and THD.	
11	Measure FRF	Set the measured function.	Choose either Spectrum or	✓Spectrum
			Spectrum+FRF	
	< Excitation Conditions			
	Requisition Sheet $(2) >$			
12	Start up time	Set the time to take for	0.02 or longer	10sec
		starting up.		
13	Shut down time	Set the time to take for	0.02 or longer	5sec
1.4	a 1	shutting down.		
14	Sweep mode	Choose an excitation	Choose either Log or Linear.	⊾Log
15	Swaap rata	Set the sweep rate and	0.001 or higher	1 Oct/min
15	SweepTate	choose the unit (Check	for log sween mode: [Oct/min]	4 x 10cmin
		either one.)	for linear sweep mode: [Hz/sec]	
16	Start frequency	Set the frequency at which	5 ~ 2 kHz	5Hz
	1 2	excitation starts to be		
		applied.		
17	Sweep direction	Choose the sweep-starting	Choose either Up or Down	☑Up
		direction.		
18	Number of sweeps	Set the number of sweeps.	1 or more (one way of Up or Down	1 time
10			is counted as 1 time.)	
19	Compression factor	Set the initial level of	Choose from $1 \sim 20$.	4
20	A ativata recording	Choose whether or not to	Choose from Ves or No	Vas
20	Activate recording	execute time-series saving		M 1 C 3
		of control data		
21	Over sampling factor	Set the sampling factor for	Designate the multiplication for	1
		measurement	control samplings; possible up to	
			102.4 kHz.	

Excitation Conditions Requisition Sheet (1)

RANDOM

Test Specimen Name Test Name

issue №	
date of issue	
issued by	

.

NTROL PARAMETERS (setting	of control parameters)	example
Test name (name of test in alphanumerics)		y_pft_pre_modal
Number of control channels	ch(s)	4 chs
Frequency resolution	Hz	1.00Hz
Min. frequency (lower limit frequency for excitation)	Hz	20Hz
Max. frequency (upper limit frequency for excitation)	Hz	2,000Hz
Degrees of freedom (DOF for analysis on control channels)		100
Control strategy	□Average □Maximum □Minimum	⊿Average
Average per loop		4
Average weight factor (average factor of control signals)		8
Sigma limiting		3
Random signal type	□True □False	☑True

c . • 1 CONT

Note) Due to the operation of this facility, "(G)" is 9.80665 m/s² in SI unit.

Excitation Conditions Requisition Sheet (2)

RANDOM

		issue №
Test Specimen Name		date of issue
Test Name		issued by
MEASUREMENT PARAMETERS (setting of measurement parameters – lim	it –) example
Number of measurement channels	ch(s)	28 chs
Measure FRF	□AP □AP+FRF	⊠AP (Autopower)
Number reference channel	No. ch	1 ch
Safety		example
RMS abort limit	dB	3.00dB
Max. allowed alarm lines (number of alarm lines)		3
Max. allowed abort lines (number of abort lines)		1
Max. repeated aborts	time(s)	5 times
Shutdown/abort time	sec	5 sec
Abort check enable level	dB	-3dB
Line abort enable level	dB	-3dB

Throughput Recording

Activate recording (time-series saving of control data)	□Yes □No
Over sampling factor (the sampling factor for measurement)	Control sampling \times

⊿Yes (save)	
4	
Excitation Conditions Requisition Sheet (3)

RANDOM

Test Specimen Name
Test Name

issue № date of issue issued by

Channel Setup (setting of control/measurement channels)

No.	group ID	point	direction	input mode	measured quantity	actual sensitivity	sensor ID
1	-	Tacho1	None	\checkmark Voltage DC / \Box AC \Box ICP / \Box Charge			
2	Control	CTRL1	+X	□Voltage DC /□AC □ICP /□Charge			
3	Control	CTRL2	+X	□Voltage DC /□AC □ICP /□Charge			
4	Control	CTRL3	+X	□Voltage DC /□AC □ICP /□Charge			
5	Control	CTRL4	+X	□Voltage DC /□AC □ICP /□Charge			
6				□Voltage DC /□AC □ICP /□Charge			
7				□Voltage DC /□AC □ICP /□Charge			
8				□Voltage DC /□AC □ICP /□Charge			
9				□Voltage DC /□AC □ICP /□Charge			
10				□Voltage DC /□AC □ICP /□Charge			
11				□Voltage DC /□AC □ICP /□Charge			
12				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
13				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
14				\Box Voltage DC / \Box AC			
15				\Box Voltage DC / \Box AC			
16				$\Box Voltage DC / \Box AC$ $\Box ICP / \Box Charge$			
17				$\Box Voltage DC / \Box AC$			
18				$\Box \text{Voltage DC} / \Box \text{AC}$			
19				$\Box \text{Voltage DC} / \Box \text{AC}$			
20				$\Box \text{Voltage DC} / \Box \text{AC}$			
21				□Voltage DC /□AC			
22				$\Box Voltage DC / \Box AC$			
23				$\Box Voltage DC / \Box AC$			
24				$\Box Voltage DC / \Box AC$			
25				□Voltage DC /□AC			
26				UICP/UCharge			
				\Box ICP / \Box Charge			

27	□Voltage DC /□AC
27	\Box ICP / \Box Charge
28	□Voltage DC /□AC
20	\Box ICP / \Box Charge
20	□Voltage DC /□AC
29	□ICP /□Charge
30	\Box Voltage DC / \Box AC
50	□ICP /□Charge
31	□Voltage DC /□AC
51	\Box ICP / \Box Charge
32	\Box Voltage DC / \Box AC
52	□ICP /□Charge
33	\Box Voltage DC / \Box AC
	□ICP /□Charge
34	□Voltage DC /□AC
51	□ICP /□Charge
35	□Voltage DC /□AC
	□ICP /□Charge
36	□Voltage DC /□AC
	□ICP /□Charge
37	\Box Voltage DC / \Box AC
38	\Box Voltage DC / \Box AC
39	UVoltage DC / LAC
40	\Box Voltage DC / \Box AC
41	
42	
43	\Box Voltage DC / \Box AC
44	$\Box VOItage DC / \Box AC$
45	\Box Voltage DC / \Box AC
46	\Box ICP / \Box Charge
	$\Box Voltage DC / \Box AC$
47	\Box ICP / \Box Charge
48	TICP / Charge
49	TICP / Charge

example

No.	group ID	point	direction	input mode	measured quantity	actual sensitivity	sensor ID
1	Control	Panel_1	+Y	$\Box Voltage DC / \Box AC$ $\Box ICP / \Box Charge$	Acceleration	1.2991 pC/(m/s ²)	XY1234
2	Measure	ACP_1	-X	□Voltage DC /□AC ☑ICP /□Charge	Acceleration	1.1 mV/(m/s ²)	AX2345
3	Control	PIU_2	+Z	✓Voltage DC /□AC □ICP /□Charge	Force	0.203 mV/N	ZZ3456

Excitation Conditions Requisition Sheet (4) RANDOM

Test Specimen Name Test Name

issue № date of issue issued by

EXCITATION PATTERN DIAGRAM (reference)	

L	i	 i	 	i	L	L	 L	L

REFERENCE SPECTRUM (setting of control levels)

overall RMS			m/s ² rms	(Grms)		
frequency Hz	level (m/s ²) ² /Hz	left inclination	right inclination	upper limit alarm level:	lower limit alarm level:	upper limit abort level:	lower limit abort level:
	(dB/oct	dB/oct	+ dB	- dB	+ dB	- dB
example		1		1			
20			3	+3	-3	+6	- 6
80	3.85 (0.04G ² /Hz)			+3	-3	+6	- 6
350	3.85 (0.04G ² /Hz)			+3	-3	+6	- 6
2,000		-3		+3	-3	+6	- 6

Note) Due to the operation of this facility, "(G)" is 9.80665 m/s^2 in SI unit.

Excitation Conditions Requisition Sheet (5)

RANDOM

Test Specimen Name	
Test Name	

LEVEL/TIME SEQUENCE (setting of level/time)

command	level [dB/Ref] (excitation level)	time [h:min:s] (test time)	measure Y/N (whether or not to measure)	offset [h:min:s] (start time)	period [h:min:s] (measurement time)	averages [time]
			$\Box Y / \Box N$			
			$\Box Y / \Box N$			
			$\Box Y / \Box N$			
			$\Box Y / \Box N$			
			$\Box Y / \Box N$			
			$\Box Y / \Box N$			
			$\Box Y / \Box N$			

example

level	-6.00	0:1:0.0	□Y/☑N	0:0:0.0	0:0:0.0	0
hold	-3.00	_	—	—	—	—
level	0.00	0:1:0.0	⊠Y/□N	0:0:15.0	0:0:30.0	20

issue № date of issue issued by

Excitation Conditions Requisition Sheet (6)

RANDOM

Test Specimen Name
Test Name

Notching Profile (setting of notching profile)

PROFILE TABLE Channel ID [
	RMS limiting (m/s ²)							
	up/low abort (m/s ²)							
No	frequency	acc	սլ	oper abort				
110	(Hz)	(m/s^2)		(dB)				
1								
2								
3								
4								
5								
	Min. frequen		Hz					
	Max. frequer	ncy*		Hz				

PRC	FILE TABLE	E Channe	el ID	[]		
	RMS limitin	ng (m/s ²)					
up/low abort (m/s ²)							
No	frequency	acc	սլ	oper abort			
NO	(Hz)	(m/s^2)		(dB)			
1							
2							
3							
4							
5							
	Min. frequen	cy*		Hz	z		
	Max. frequer	ncy*		Hz	2		

PROFILE TABLE Channel ID [
	RMS limiting (m/s ²)							
	up/low abort (m/s ²)							
No	frequency (Hz)	acc (m/s ²)	սլ	oper abort (dB)				
1								
2								
3								
4								
5								
	Min. frequen	ıcy*		Hz				
	Max. frequer	ncy*		Hz				

issue №	
date of issue	
issued by	

			(]	No.	/)
PRO	FILE TABLE	Channe	1 ID	[]
	RMS limitin	lg (m/s ²)			
	up/low abor	rt (m/s ²)			
No	frequency (Hz)	acc (m/s ²)	ι	upper al (dB)	oort
1					
2					
3					
4					
5					
	Min. frequency*				Hz
	Max. frequer	ncy*			Hz

PRO	FILE TABLE	Channe	l ID	[]
	RMS limitin	ng (m/s ²)			
	up/low about	rt (m/s ²)			
No	frequency	acc	ι	pper abort	t
NO	(Hz)	(m/s ²)		(dB)	
1					
2					
3					
4					
5					
	Min. frequency*			Н	Z
	Max. frequency*			Н	Z

PRO	FILE TABLE	[]		
	RMS limitin	ig (m/s ²)			
	up/low abor	rt (m/s ²)			
No	frequency (Hz)	upper abort (dB)			
1					
2					
3					
4					
5					
	Min. frequency*			Hz	<u>c</u>
	Max frequency [*]			Hz	

* Fill in the blanks with "—" if Minimum/ Maximum Frequencies as control parameters coincide with those of notching.

Notching Profile (setting of notching profile)

PROFILE TABLE Channel ID]
	RMS limiti	ng (m/s ²)			
	up/low abo	ort (m/s^2)			
No	frequency (Hz)	acc (m/s ²)	սլ	pper ab (dB)	ort
1					
2					
3					
4					
5					
Min. frequency*					Hz
	Max. frequer	ncy*			Hz

PROFILE TABLE Channel ID]
	RMS limiti	ng (m/s ²)			
	up/low abo	ort (m/s ²)			
No	frequency (Hz)	acc (m/s ²)	սլ	pper ab (dB)	ort
1					
2					
3					
4					
5					
Min. frequency*					Hz
	Max. frequer	ncy*			Hz

PROFILE TABLE Channel ID				[]
	RMS limiti	ng (m/s ²)		
	up/low abo	ort (m/s^2)		
No	frequency (Hz)	acc (m/s ²)	uŗ	oper abort (dB)
1				
2				
3				
4				
5				
	Min. frequency*			Hz
	Max. frequer	ncy*		Hz

PROFILE TABLE Channel ID]
	RMS limiti	ng (m/s ²)			
	up/low abo	ort (m/s ²)			
No	frequency (Hz)	acc (m/s ²)	սլ	pper abo (dB)	ort
1					
2					
3					
4					
5					
	Min. frequen	icy*			Hz
	Max. frequer	ncy*			Hz

			(N	0.	/)
PRO	FILE TABLE	Channe	l ID	[]
	RMS limitin	ng (m/s ²)				
	up/low abor	rt (m/s ²)				
No	frequency (Hz)	acc (m/s ²)	ι	ipper (dF	abort 3)	
1						
2						
3						
4						
5						
	Min. frequency*				Hz	
	Max. frequer	ncy*			Hz	

PROFILE TABLE Channel ID				[]
	RMS limitin	ng (m/s ²)			
	up/low abor	rt (m/s ²)			
No	frequency (Hz)	acc (m/s ²)	ι	upper abort (dB)	
1					
2					
3					
4					
5					
Min. frequency*				Hz	
	Max. frequency*			Hz	

PROFILE TABLE Channel ID				[]
	RMS limitin	ng (m/s ²)			
	up/low abor	rt (m/s ²)			
No	frequency (Hz)	acc (m/s ²)	ι	upper abort (dB)	
1					
2					
3					
4					
5					
Min. frequency*				Н	Z
	Max. frequer	ncy*		Н	Z

PRO	FILE TABLE	Channe	1 ID	[]
	RMS limitin	ig (m/s ²)			
	up/low about	rt (m/s ²)			
No	frequency (Hz)	ι	upper abort (dB)		
1					
2					
3					
4					
5					
	Min. frequency*			Hz	5
	Max. frequer	ncy*		Hz	5

* Fill in the blanks with "—" if Minimum/ Maximum Frequencies as control parameters coincide with those of notching.

Example of Excitation Conditions Requisition Sheet **RANDOM**

No.	item	explanation	parameter range	example
	< Excitation Conditions			
	Requisition Sheet (1) $>$			
1	Test name	Fill in the space with an ID that	with only alphanumerics	y_pft_pre_mo
		distinguishes the test.		dal
2	Number of control channels	Set the number of control	1 ~ 4 chs	4 chs
		channels.		
3	Frequency resolution	Set the frequency resolution.		1.00Hz
4	Min. frequency	Set the lower limit of excitation	5Hz or higher	20Hz
		frequency band.		
5	Max. frequency	Set the upper limit of excitation	2 kHz or lower	2,000Hz
		frequency band.		
6	Degrees of freedom	Set the DOF for analysis on	100 or more is recommended.	100
		control channels.		
7	Control strategy	Choose an excitation control	"Average" is to be chosen.	Average
		method.		
8	Average per loop	Set the number of average	4 is recommended.	4
		operations on control signals per		
		one control loop.		
9	Average weight factor	Set the average factor of control	8 is recommended.	8
		signals.		
10	Sigma limiting	Set the sigma limit.	3 is recommended.	3
11	Random signal type	Set the random signal type.	Choose "True."	☑True
	< Excitation Conditions			
	Requisition Sheet (2) $>$			
14	Number of measurement channels	Set the number of measurement	1 ~ 48 chs (including control channels)	28 chs
		channels on the controller side.		
15	Measure FRF	Set the measured function.	Choose either AP or AP+FRF	₽AP
16	Number reference channel	Choose the reference channel	Choose one from chs $1 \sim 48$ as the	1ch
		number for calculating cross	reference channel, and choose either	
		power and FRF.	Drive or Average as the calculation	
			method.	
17	RMS Abort Limit	Set the RMS abort limit.	0 or more	3.00dB
18	Max. allowed alarm lines	Set the Max. alarm lines.	0 or more	3
19	Max. allowed abort lines	Set the Max. abort lines.	0 or more	1
20	Max. repeated aborts	Set the maximum number of	0 or more	5times
	~	repeated aborts.		_
21	Shutdown/abort time	Set the time to take for shutting	0.5 or longer	5sec
		down drive signals in abort.		
22	Abort check enable level	Set the level for enabling abort	0 or lower	-3dB
		checking.		
23	Line abort enable level	Set the level for enabling line	0 or lower	-3dB
24	A 1	abort.		DAY.
24	Activate recording	Choose whether or not to	Choose from Yes of No.	∠ Yes
		execute time-series saving of		
25		control data.		4
25	Over sampling factor	Set the sampling factor for	Designate the multiplication for control	4
		measurement.	samplings; possible up to 102.4 kHz.	

Excitation Conditions Requisition Sheet (1)

SHOCK

Test Specimen Name
Test Name

issue №
date of issue
issued by

CONTROL PARAMETERS (setting of control parameters)

Test name (name of test in alphanumerics)	
Number of control channels	ch(s)
Min. frequency	
(lower limit frequency for	Hz
excitation)	
Max. frequency	
(upper limit frequency for	Hz
excitation)	
Average per loop	time(s)
Pulse repetition rate (number of applied pulses / sec.)	time(s)/sec

REFERENCE PULSE (setting of pulse)

Pulse type	Classical	 ☐Half sine ☐Triangular ☐Rectangular ☐Initial Peak ☐Terminal Peak ☐Trapezoid 	⊠SRS
	□Measured	Sine burst	-
	□Synthesized	SRS]

example
y_shock
1 ch
2Hz
2,000Hz
2 times
1 time/sec

example

issue № date of issue issued by

Excitation Conditions Requisition Sheet (2)

SHOCK

Test Specimen Name	
Test Name	

MEASUREMENT PARAMETERS (setting of measurement parameters)

Number of measurement channels	chs
Number of averages	
Number reference channel	No. ch
Measure FRF	□Time □Time & FRF
Online SRA (online shock response analysis)	□Yes □No

example 2 chs 2 1 ch ☑Time & FRF ☑Yes

ALARM AND ABORT CONDITIONS (setting of alarm / abort)

Max. percent of alarm points	%
Max. percent of abort points	%
Max. number of repeated aborts	time(s)
Line abort enable level	dB

example
10%
0%
5 times
-3dB

Excitation Conditions Requisition Sheet (3) SHOCK

			<u>iss</u>	sue №
Test Name			<u>da</u>	te of issue
			188	sued by
SHOCK REFERENCE PROFILE EI	DITOR (setting of r	eference pulse)		example
Reference name (name of pulse in alphanumerics)				y_pulse
Amplitude (max. amplitude)		m/s ²		200 m/s ²
Duration (pulse width)		ms		11.00 ms
Pulse polarity	□Positive	□Negative		Positive
Min. number of point (the min. number of samples in a pulse)				5
Pre and post pulse	□Single-Sided □Optimized	□Double-Sided □Minimized		☑ Double-Sided
Pre pulse amplitude		% Pulse peak		30.00% Pulse peak
Post pulse amplitude		% Pulse peak		30.00% Pulse peak
Abort limit		% Pulse peak		50.00% Pulse peak
Alarm limit		% Abort		50.00% Abort
Pre pulse abort (pre pulse abort limit in percentage)		% Pulse peak		50.00% Pulse peak
Post pulse abort (post pulse abort limit in percentage)		% Pulse peak		50.00% Pulse peak

Note) Those who chose "Measured" for the reference pulse item in the excitation conditions requisition sheet (1) are to use the excitation conditions requisition sheet (3) SINE BURST. When "Synthesized" was chosen in that item, use the excitation conditions requisition sheet (3) SHOCK-SRS.

Excitation Conditions Requisition Sheet (4)

SHOCK

Test Specimen Name
Test Name

issue № date of issue issued by

Channel Setup (setting of control/measurement channels)

No.	group ID	point	direction	input mode	measured quantity	actual sensitivity	sensor ID
1	-	Tacho1	None	✓Voltage DC /□AC □ICP /□Charge			
2	Control	CTRL1	+X	□Voltage DC /□AC □ICP /□Charge			
3				\Box Voltage DC / \Box AC			
4				$\Box Voltage DC / \Box AC$			
5				□Voltage DC /□AC			
6				□ Voltage DC /□AC			
7				□ICP /□Charge □Voltage DC /□AC			
/				$\Box ICP / \Box Charge$ $\Box Voltage DC / \Box AC$			
8				\Box ICP / \Box Charge			
9				\Box Voltage DC / \Box AC			
10				□Voltage DC /□AC			
				$\Box ICP / \Box Cnarge$			
11				\Box ICP / \Box Charge			
12				□Voltage DC /□AC			
				\Box ICP / \Box Charge			
13				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
14				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
15				$\Box Voltage DC / \Box AC$			
16				□Voltage DC /□AC			
-				\Box ICP / \Box Charge			
17				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
18				\Box Voltage DC / \Box AC			
19				$\Box Voltage DC / \Box AC$			
20				\Box Voltage DC / \Box AC			
20				□ICP /□Charge			
21				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
22				\Box Voltage DC / \Box AC \Box ICP / \Box Charge			
23				\Box Voltage DC / \Box AC			
24				$\Box Voltage DC / \Box AC$			
2.5				□Voltage DC /□AC			
				\square ICP / \square Charge			
26				$\Box Voltage DC / \Box AC$ $\Box ICP / \Box Charge$			

27	□Voltage DC /□AC
27	\Box ICP / \Box Charge
28	□Voltage DC /□AC
20	\Box ICP / \Box Charge
20	□Voltage DC /□AC
29	□ICP /□Charge
30	\Box Voltage DC / \Box AC
50	□ICP /□Charge
31	□Voltage DC /□AC
51	\Box ICP / \Box Charge
32	\Box Voltage DC / \Box AC
52	□ICP /□Charge
33	\Box Voltage DC / \Box AC
	□ICP /□Charge
34	□Voltage DC /□AC
51	□ICP /□Charge
35	□Voltage DC /□AC
	□ICP /□Charge
36	□Voltage DC /□AC
	□ICP /□Charge
37	\Box Voltage DC / \Box AC
38	\Box Voltage DC / \Box AC
39	UVoltage DC / LAC
40	\Box Voltage DC / \Box AC
41	
42	
43	\Box Voltage DC / \Box AC
44	$\Box VOItage DC / \Box AC$
45	\Box Voltage DC / \Box AC
46	\Box ICP / \Box Charge
	$\Box Voltage DC / \Box AC$
47	\Box ICP / \Box Charge
48	TICP / Charge
49	TICP / Charge

examp	le						
No.	group ID	point	direction	input mode	measured quantity	actual sensitivity	sensor ID
1	Control	Panel_1	+Y	□Voltage DC /□AC □ICP /☑Charge	Acceleration	1.2991 pC/(m/s ²)	XY1234
2	Measure	ACP_1	-X	□Voltage DC /□AC ☑ICP /□Charge	Acceleration	1.1 mV/(m/s ²)	AX2345
3	Control	PIU_2	+Z	✓Voltage DC /□AC □ICP /□Charge	Force	0.203 mV/N	ZZ3456

Excitation Conditions Requisition Sheet (5)

SHOCK

Test Specimen Name

Test Name

LEVEL/TIME SEQUENCE (setting of level/time)

command	level [dB/Ref] (excitation level)	pulses [time] (number of pulses)	startup mode [time] (excitation- starting mode)	measure ☑Y/□N (whether or not to measure)	offset [time] (measurement- starting pulse)	period [time] (measurement pulse)	averages [time]
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
				$\Box Y / \Box N$			
example							

level	-10.00	30	automatic	$\Box Y / \Box N$	_	_	—
hold	-6.00	30	automatic	$\Box Y / \Box N$	_	_	_
level	-3.00	3	automatic	$\Box Y / \Box N$	_	_	_
level	0.00	3	single shot	$\mathbf{V}Y/\Box N$	0	1	1

Example of Excitation Conditions Requisition Sheet **SHOCK**

No.	item	explanation	parameter range	example
	< Excitation Conditions			
1	Requisition Sheet $(1) >$	Fill in the space with an ID that	with only alphanumarias	v shoek
1	rest name	distinguishes the test.	with only aphanumenes	y_shock
2	Number of control channels	Set the number of control channels.	1ch	1ch
3	Min. frequency	Set the lower-limit frequency	5Hz or higher	2Hz
4	Max. frequency	Set the upper-limit frequency	2,000Hz or lower	2,000Hz
5	Average per loop	Set the number of average operations on control signals	1 or more	2 times
6	Pulse repetition rate	per one control loop Set the number of applied	Set in the range of 0.001 ~ 10	1 time/sec
7	Pulse type	Choose a reference pulse type.	Choose one from Half sine, Triangular, Rectangular, Initial Peak, Terminal Peak	⊠SRS
			Trapezoid, Sine burst, and SRS	
	< Excitation Conditions			
8	Number of measurement	Set the number of measurement channels on the controller side	1 ~ 48 chs (including control channels)	2 chs
9	Number of averages	chambers on the controller side.		2
10	Number reference channel	Choose the reference channel number for calculating FRF.	Choose one from chs 1 ~ 48 as the reference channel, and choose Drive as the calculation method	1ch
11	Measure FRF	Set the measured function.	Choose either Time or Time+FRF	☑ Time + FRF
12	Online SRA	Choose whether or not to	Choose from Yes or No.	⊠Yes
		execute online shock response		
13	Max. percent of alarm points	Set the maximum number of	0 ~ 100	10%
		points among measurement		
14	Max, percent of abort points	Set the maximum number of	0 ~ 100	0%
		points among measurement		
15	Max_number of repeated aborts	points (%) to abort operation.	1 or more	5times
15	Max. number of repeated aborts	repeated aborts.		Stilles
16	Line abort enable level	Set the level for enabling abort checking.	0 or lower	-3dB
	< Excitation Conditions Requisition Sheet (3) $>$			
17	Reference name	Fill in the space with the name	with only alphanumerics	y_pulse
18	Amplitude	of the given pulse Set the maximum amplitude	0 or more (depending on waveforms)	200 m/s ²
19	Duration	(m/s ⁻ .) Set the pulse width	0 or more (depending on waveforms)	11.00 ms
20	Pulse polarity	Choose the pulse direction.	Choose either positive or negative.	✓Positive
21	Min. number of point	Set the minimum number of	3 ~ 32,768	5
22	Pre and post Pulse	samples in a pulse. Choose the pre and post pulse.	Choose one from Single-sided,	☑Double-sided
			Minimized.	
23	Pre pulse amplitude	Set the pre pulse amplitude against the main pulse.	0 ~ 10,000	30.00%
24	Post pulse amplitude	Set the post pulse amplitude	0 ~ 10,000	30.00%
25	Abort limit	Set the abort limit percentage	0 ~ 10,000	50.00%
26	Alarm limit	Set the alarm limit percentage	0 ~ 100	50.00%
27	Pre nulse abort	against the abort limit. (%)	0 ~ 10 000	50.00%
21		pulse against its amplitude.	0 10,000	50.00%
28	Post pulse abort	Set the abort limit for the post pulse against its amplitude.	0 ~ 10,000	50.00%

Excitation Conditions Requisition Sheet (3)

SINE BURST

Test Specimen Name	
Test Name	

issue №	
date of issue	
issued by	

SINE BURST		example
Reference name (name of pulse in alphanumerics)		y_pulse
Frequency	Hz	10Hz
Amplitude (max. amplitude)	m/s ²	2.00 m/s ²
Sampling rate (sampling frequency)	Hz	4000.00Hz
# Periods constant (number of constant waves)		5
# Periods up / down(number of amplified/damped waves)	/	2/2
Min. number of point (the min. number of samples in a pulse)		5
Pre and post pulse	□Single-Sided □Double-Sided □Optimized □Minimized	☑Double-Sided
Pre pulse amplitude	% Pulse peak	30.00% Pulse peak
Post pulse amplitude	% Pulse peak	30.00% Pulse peak
Abort limit	% Pulse peak	50.00% Pulse peak
Alarm limit	% Abort	50.00% Abort
Pre pulse abort (pre pulse abort limit in percentage)	% Pulse peak	50.00% Pulse peak
Post pulse abort (post pulse abort limit in percentage)	% Pulse peak	50.00% Pulse peak

Note) Those who chose "Measured" for the reference pulse item in the excitation conditions requisition sheet

(1) are to use this sheet.

Example of Excitation Conditions Requisition Sheet **SINE BURST**

No	item explanation		parameter range	example
	< Excitation Conditions			
	Requisition Sheet (3) $>$			
1	Reference name	Fill in the space with the name	with only alphanumerics	y_pulse
		of the given pulse		
2	Frequency	Set the excitation frequency	5 ~ 2,000Hz	10Hz
		(Hz)		
3	Amplitude	Set the maximum amplitude	0 or more (depending on waveforms)	2.00 m/s ²
		(m/s ² .)		
4	Sampling rate	Set the sampling frequency.	102.4 kHz or less	4000.00Hz
5	# Periods constant	Set the number of waves in	1 or more	5
		stationary state.		
6	# Periods up/down	Set the number of waves with	0 or more	2/2
		amplification/damping.		
7	Min. number of point	Set the minimum number of	3 ~ 32,768	5
		samples in a pulse.		
8	Pre and post pulse	Choose the pre and post pulse.	Choose one from Single-sided,	☑ Double-sided
			Double-sided, Optimized, and	
			Minimized.	
9	Pre pulse amplitude	Set the pre pulse amplitude	0 ~ 10,000	30.00% Pulse
		against the main pulse.		peak
10	Post pulse amplitude	Set the post pulse amplitude	0 ~ 10,000	30.00% Pulse
		against the main pulse.		peak
11	Abort limit	Set the abort limit percentage	0 ~ 10,000	50.00% Pulse
		against the pulse peak. (%)		peak
12	Alarm limit	Set the alarm limit percentage	0 ~ 100	50.00% Abort
		against the abort limit. (%)		
13	Pre pulse abort	Set the abort limit for the pre	0 ~ 10,000	50.00% Pulse
		pulse against its amplitude.		peak
14	Post pulse abort	Set the abort limit for the post	0 ~ 10,000	50.00% Pulse
		pulse against its amplitude.		peak

Excitation Conditions Requisition Sheet (3) SHOCK-SRS

	issue №
Test Specimen Name	date of issue
Test Name	issued by

Shock Response Synthesis example Name (data name within 16 y_srs alphanumerics) Hz 20Hz Min. frequency Max. frequency Hz 2,000Hz Point per octave 3 Q-factor 10 $\Box ABS acc / \Box real vel$ Dimension ABS acc (unit of shock response analysis) / □real disp

TIME Synthesis

Туре	WAVELET		
(type of waveform)	□DAMPED SINE	V WAVELEI	
Duration		0.025	
(damping duration)	S	0.028	
Abort limit	% Pulse peak	50% Pulse peak	
Alarm limit	% Abort	50% Abort	

Target SRS

frequency [Hz]	left slope [dB/oct]	amplitude [m/s²]	right slope [dB/oct]	lower tol. [dB]	upper tol. [dB]	upper abort [dB]

example

100	+9		3	3	6
1,000		1,000	3	3	6

Note) Those who chose "Synthesized" for the reference pulse item in the excitation conditions requisition sheet (1) are to use this sheet.

Example of Excitation Conditions Requisition Sheet **SHOCK-SRS**

No	item	explanation	parameter range	example
	< Shock Response Synthesis >			
1	Name	Fill in the space with an ID that	within 16 alphanumeric letters	y_srs
		distinguishes the test.		
2	Min. frequency	Set the lower-limit frequency of	5Hz or higher	20Hz
		the target SRS.		
3	Max. frequency	Set the upper-limit frequency of	2,000Hz or lower	2,000Hz
		the target SRS.		
4	Point per octave	Set the number of samples per	1 ~ 99	3
		octave.		
5	Q-factor	Set the quality factor for SRS	10 or more is recommended.	10
		analysis.		
6	Dimension	Choose the unit for SRS	Choose one from ABS acc, real	ABS acc
		analysis.	vel, or real disp.	
	< SR - Time pulse $>$			
7	Туре	Choose the type of waveform to	Choose either WAVELET or	WAVELET
		be laid on top of each other.	DAMPED SINE.	
8	Duration	Set the total time of the	0 or longer	0.02s
		synthesized pulse.		
9	Abort limit	Set the abort limit percentage	0 ~ 100,000	50% Pulse peak
		against the pulse peak. (%)		
10	Alarm limit	Set the alarm limit percentage	0 ~ 100	50% Abort
		against the abort limit. (%)		

Appendix C Data Acquisition/Analysis Conditions Sheet

Small Vibration Test Facility

Data Acquisition/	check		by		
				AES	
1. Name of Test :					
Note) in alphanumerics, un	derlines,	and hyphens			
2. Excitation Waveform :		SINE (UP • DOWN • UP-DOV	VN)		
		RANDOM			
		CLASSICAL SHOCK			
		SHOCK SYNTHSIS			
		SINE BURST			
3. Data Acquisition Conditions	:				
Channel Information		>>> cf. data acquisition databa	ase list		
Lower-limit Analysis Fr	equency	>>> <u>Hz</u>	, <u>.</u>		
Upper-limit Analysis Free	equency	>>> <u>Hz</u>			
Sampling Factor		$>>>$ Sampling Frequency \times	ti	imes	
		(The sampling frequency is auton	natically set	based or	n the upper-limi
		analysis frequency.)			
Acquisition Range		$>>>$ \Box PRE level + 1	FULL level		
		\Box only FULL leve	el		
		□ others			
4. Analysis Conditions					
□ Response Curve		shown in the data acquisition/a	nalysis condi	tions sheet	- 1
□ PSD/Auto Power S	pectrum	shown in the data acquisition/a	nalysis condi	tions sheet	- 2
□ Transfer Function/	- Cohereno	shown in the data acquisition/a	nalysis condi	tions sheet	- 3
		shown in the data acquisition/a	nalysis condi	tions sheet	- 4

- \Box SRS
- □ Time History Waveform

shown in the data acquisition/analysis conditions sheet - 5

1.	Name of Analysis: Response Curve Analysis
2.	Analysis Range
3.	Acquisition by Measurement ChannelsHarmonicRmsPeakAverageTHD
4.	Analysis Channel 4.1 Response Channel ALL PhysicalChannel ID
5.	Graph Display Designation 5.1 X-axis Scale (frequency) upper limit Hz logarithm linear lower limit Hz
	Jupper-limit scale: AUTO upper-limit scale: display widthdecade display widthdecade logarithm linear

Data Acquisition/Analysis Conditions Sheet 1

Data Acquisition/Analysis	Conditions Sheet 2
---------------------------	--------------------

1.	Name of Analysis: PSD / Auto Power Spectrum PSD Auto Power Spectrum
2.	Analysis Range 2.1 Time
	Entire Full-level Time
	\Box from () sec. to () sec. after the start of full level
	□ Others. fromto
3.	DOF for Analysis:
4.	Analysis Channel 5.1 Response Channel ALL PhysicalChannel ID
5.	Graph Display Designation
	5.1 X-axis Scale (frequency)
	upper limit Hz \Box logarithm \Box linear
	5.2 Y-axis Scale
	upper-limit scale: AUTO
	display width decade display width decade
	□logarithm □linear □logarithm □linear

Data Acquisition/Analysis	Conditions Sheet 3
---------------------------	--------------------

1.	Name of Analysis: Transfer Function Analysis / Coherence Transfer Function Analysis Coherence
2.	Analysis Range 2.1 Time Definition Entire Full-level Time Definition from () sec. to () sec. after the start of full level Definition Others. from to
3.	Number of Average Operations :
4.	Analysis Channel
	4.1 Reference Channel
	PhysicalChannel ID (name of signals:)
	4.2 Response Channel ALL PhysicalChannel ID
5.	Graph Display Designation
	5.1 X-axis Scale (frequency)
	upper limitHz \Box logarithm \Box linear
	lower limitHz
	5.2 Y-axis Scale
	□ upper-limit scale: AUTO □ upper-limit scale:
	display width decade display width decade
	\Box logarithm \Box linear \Box logarithm \Box linear

Data Acquisition/Analysis Conditions Sheet 4

- 1. Name of Analysis: SRS
- 2. Analysis Bandwidth
 - upper limit_____Hz lower limit_____Hz
- 3. Point per octave (1/n octave) :
 - * The level of *n* is set in the range of $1 \sim 24$ (normally 12)

4. SRS Type

	Maximum	Primary	Residual
Absolute value			
Positive (+)			
Negative (-)			

* Multiple options can be chosen.

5. SRS Q factor

- \Box SRS Q : _____
- 6. Analysis Channel
 - 6.1 Response Channel
 - □ ALL
 - □ PhysicalChannel ID

7. Graph Display Designation

7.1	X-axis Scale (frequency)							
	upper limit	Hz		🗌 log	garithm		linear	
	lower limit	Hz						
7.2	Y-axis Scale							
	\Box upper-limit scale: A	UTO			upper-limit	scale:		
	display width	decade			display widt	th	decade	
		garithm	□linear			logari	thm	□linea

1. Name of Analysis: Time History Waveform

- \Box Acceleration
- □ Velocity
- □ Displacement
- □ Strain

2. Analysis Range

- 2.1 Time
 - □ Entire Full-level Time
 - \Box from () sec. to () sec. after the start of full level
 - \Box Others. from to

3. Analysis Channel

- 3.1 Response Channel
 - \Box ALL
 - PhysicalChannel ID

4. Graph Display Designation

- 4.1 X-axis Scale (time series axis)
 - \Box Auto Scale
 - □ Time ______ sec ~ _____sec
 - □ Others ~ _____
- 4.2 Y-axis Scale (amplitude)
 - □ Auto Scale
 - □ Time ______ sec ~ _____ sec
 - □ Others _____ ~ ____

Example of Data Acquisition Database List

fixed	choice	fixed	free memo	choice	choice	choice	auto setting	choice	memo	auto setting	memo	auto setting	choice
PhysicalChannel ID	OnOff	ChannelGroupID	Point	Direction	InputMode	Mesured Quantity	Coupling	ElectricalUnit	Ac	tual Sensitivity	Serial number	Range EU	Range
Input1	TRUE	Measure	REF1	'+Χ	ICP	Acceleration	Single Ended	V	100	V/(m/s^2)		0.1 m/s^2	10
Input2	TRUE	Measure	REF2	'-X	Charge	Acceleration		рС	100	pC/(m/s^2)		100 m/s^2	1.00E-08
Input3	TRUE	Measure	Panel1	'+Y	Voltage DC	Angle	Single Ended	mV	100	mV/°		31.6°	3.16
Input4	TRUE	Measure	Panel2	'-Y	Voltage DC	AngularAcceleration	Single Ended	mV	100	mV/(rad/s^2)		10 rad/s^2	1
Input5	TRUE	Measure	Panel3	'+Z	Voltage DC	AngularDisplacement	Single Ended	mV	100	mV/rad		3.16 rad	0.316
Input6	TRUE	Measure	Panel4	'-Z	Voltage DC	AngularVelocity	Single Ended	mV	100	mV/(rad/s)		1.58 rad/s	0.158
Input7	TRUE	Measure	Panel5	'+RX	Voltage DC	AtmosphericPressure	Single Ended	mV	100	mV/bar		0.79 bar	0.079
Input8	TRUE	Measure	Panel6	'-RX	Voltage DC	Current	Single Ended	mV	100	mV/A		0.395 A	0.0395
Input9	TRUE	Measure	Panel7	'+X	Voltage DC	Displacement	Single Ended	mV	100	mV/mm		0.0001975 m	0.01975
Input10	TRUE	Measure	Panel8	'+X	Voltage DC	Force	Single Ended	mV	100	mV/N		100 N	10
Input11	TRUE	Measure	Panel9	'+X	Voltage DC	Frequency	Single Ended	mV	100	mV/Hz		31.6 Hz	3.16
Input12	TRUE	Measure	Panel10	'+Χ	Voltage DC	Position	Single Ended	mV	100	mV/m		10 m	1
Input13	TRUE	Measure	AAAA1	'+X	Voltage DC	Length	Single Ended	mV	100	mV/m		3.16 m	0.316
Input14	TRUE	Measure	AAAA2	'+X	Voltage DC	MomentOfForce	Single Ended	mV	100	mV/Nm		1.58 Nm	0.158
Input15	TRUE	Measure	AAAA3	'+Χ	Voltage DC	ParticleVelocity	Single Ended	mV	100	mV/(m/s(pv))		0.79 m/s(pv)	0.079
Input16	TRUE	Measure	AAAA4	'+Χ	Voltage DC	Power	Single Ended	mV	100	mV/W		0.395 W	0.0395
Input17	TRUE	Measure	BBBB1	'+X	Voltage DC	Pressure	Single Ended	mV	100	mV/Pa		0.1975 Pa	0.01975
Input18	TRUE	Measure	BBBB2	'+X	Voltage DC	Acceleration	Single Ended	mV	100	mV/(m/s^2)		100 m/s^2	10
Input19	TRUE	Measure	BBBB3	'+Χ	Voltage DC	RatioPercentage	Single Ended	mV	100	mV/%		31.60%	3.16
Input20	TRUE	Measure	BBBB4	'+Χ	Voltage DC	Resistance	Single Ended	mV	100	mV/Ohm		10 Ohm	1
Input21	TRUE	Measure	BBBB5	'+X	Voltage DC	RotationalSpeed	Single Ended	mV	100	mV/rpm		3.16 rpm	0.316
Input22	TRUE	Measure	BBBB6	'+X	Voltage DC	Speed	Single Ended	mV	100	mV/(km/h)		1.58 km/h	0.158
Input23	TRUE	Measure	BBBB7	'+Χ	Voltage DC	Speed	Single Ended	mV	100	mV/(km/h)		0.79 km/h	0.079
Input24	TRUE	Measure	BBBB8	'+Χ	Voltage DC	Strain	Single Ended	mV	100	mV/uE		0.395 uE	0.0395
Input25	TRUE	Measure	CCCC1a	'+X	Voltage DC	Stress	Single Ended	mV	100	mV/MPa		0.1975 MPa	0.01975
Input26	TRUE	Measure	CCCC2a	'+Χ	Voltage DC	Temperature	Single Ended	mV	100	mV/K		100 K	10
Input27	TRUE	Measure	CCCC3a	'+X	Voltage DC	Velocity	Single Ended	mV	100	mV/(m/s)		31.6 m/s	3.16
Input28	TRUE	Measure	CCCC4a	'+Χ	Voltage DC	Voltage	Single Ended	mV	100	mV/V		10 V	1
Input29	TRUE	Measure	CCCC5a	'+Χ	Voltage DC	VolumeAcceleration	Single Ended	mV	100	mV/(m^3/s^2)		3.16 m ³ /s ²	0.316
Input30	TRUE	Measure	CCCC6a	'+Χ	Voltage DC	VolumeDisplacement	Single Ended	mV	100	mV/m^3		1.58 m^3	0.158
Input31	TRUE	Measure	CCCC7a	'+X	Voltage DC	VolumeFlow	Single Ended	mV	100	mV/(l/s)		0.79 l/s	0.079
Input32	TRUE	Measure	CCCC8a	'+Χ	Voltage DC	Acceleration	Single Ended	mV	100	mV/(m/s^2)		0.395 m/s^2	0.0395
Input33	FALSE	Measure	Point33	None	Charge	Acceleration		рС	100	pC/(m/s^2)		100 m/s^2	1.00E-08
Input34	FALSE	Measure	Point34	None	Charge	Acceleration		рС	100	pC/(m/s^2)		31.6 m/s^2	3.16E-09
Input35	FALSE	Measure	Point35	None	Charge	Acceleration		рС	100	pC/(m/s^2)		10 m/s^2	1.00E-09
Input36	FALSE	Measure	Point36	None	Charge	Acceleration		рС	100	pC/(m/s^2)		31.6 m/s^2	3.16E-09
Input37	FALSE	Measure	Point37	None	Charge	Acceleration		рС	100	pC/(m/s^2)		10 m/s^2	1.00E-09
Input38	FALSE	Measure	Point38	None	Charge	Acceleration		рС	100	pC/(m/s^2)		3.16 m/s^2	3.16E-10
Input39	FALSE	Measure	Point39	None	Charge	Acceleration		рС	100	pC/(m/s^2)		1.58 m/s^2	1.58E-10
Input40	FALSE	Measure	Point40	None	Charge	Acceleration		рС	100	pC/(m/s^2)		0.79 m/s^2	7.90E-11
Input41	FALSE	Measure	Point41	None	Charge	Acceleration		рС	100	pC/(m/s^2)		0.395 m/s^2	3.95E-11
Input42	FALSE	Measure	Point42	None	Charge	Acceleration		рС	100	pC/(m/s^2)		0.1975 m/s^2	1.98E-11

item description content Physical Channel ID physical ID of frontend; unchangeable fixed whether or not to use the corresponding channels; chosen from TRUE/FALSE On Off choice Channel Group ID The channel group IDs for measurement are fixed with "Measure." fixed names of measured points; described with alphanumerics, hyphens, underbars, spaces, etc. (capital/small letters discriminable) Point free memo sensor directions; chosen in terms of polarities (+, -), + directions (X, Y, Z, RX, RY, RZ), or S Direction choice input formats for sensors; chosen from Voltage AC, Voltage DC, ICP, and Charge Input Mode choice physical quantity for measurement; chosen from Acceleration, Angle, AngularAcceleration, AngularDisplacement, AngularVelocity, AtmosphericPressure, Current, Displacement, Force, Frequency, Position, Length, MomentOfForce, Measured Quantity choice ParticleVelocity, Power, Pressure, Acceleration, RatioPercentage, Resistance, RotationalSpeed, Speed, Strain, Stress, Temperature, Velocity, Voltage, VolumeAcceleration, VolumeDisplacement, and VolumeFlow. automatically determined by the InputMode Coupling auto setting Electrical Unit choice chosen according to the Measured Quantity Sensor sensitivity is to be written. memo Actual Sensitivity The unit is automatically set according to the Measured Quantity and the Electrical Unit. auto setting The serial numbers of sensors are to be written. Serial number memo automatically set according to the Actual Sensitivity and the Range Range EU auto setting Range The input ranges for sensors are to be chosen. choice

<Explanation for the Information to be Filled in the Acceleration Database List>

Appendix D Example of Data Output

Figure D-1 Results of Excitation Control

Figure D-2 Drive Signals

Figure D-3 Acceleration Responses

Figure D-4 Transfer Function