6mφ Radiometer Space Chamber

Users' Manual

Advanced Engineering Services Co., Ltd.

本文書は、AD2-I20-A004「6m φ 放射計スペースチャンバ」初版を英訳したものであり、最新版で あることは保証されていません。

英訳版を用いての設備利用検討に当たっては、以下の連絡先にお問い合わせの上、最新情報をご確認ください。

tfcd_rikatsu@aes.co.jp

This document was translated from first edition of AD2-I20-A004 " $6m\phi$ Radiometer Space Chamber Users' Manual", which may not be the latest edition. Please contact the following address for the confirmation of the latest edition or if you have any inquiry concerning the contents of the English edition.

tfcd_rikatsu@aes.co.jp

Table of Contents

1. Introduction	1
2. Brief Overview of this Facility	2
2.1. System Outline	2
2.2. Main Specifications	4
2.2.1. Monitor and Control System	5
2.2.2. Vacuum Vessel System	5
2.2.3. Vacuum Equipment System	
2.2.4. Cryogenic System	
2.2.5. Power supply System for IR Heaters	
2.2.6. Vibration Isolation System	14
2.2.7. Data Acquisition System	
2.2.8. Utility Equipment	
2.2.9. Gadgets and Spares	
3. User I/F	
3.1. Configuration between Inside and Outside of Space Chamber	
3.2. Measurement and Control Room	
3.3. Device I/Fs	
3.3.1. Vacuum Vessel	
3.3.2. Cryogenic System	65
3.3.3. Power Supplies for Heat Sources	65
3.3.4. Control Mode	67
3.3.5. Limit Function	71
3.3.6. Vibration Control System	77
3.3.7. Data Acquisition System	
3.3.8. Utility Facilities	
3.4. Facility Belongings	
3.5. Building I/F	
4. Execution of Tests	101
4.1. Test-related Work Procedure	101
4.2. Test Procedure	102
4.2.1. General Description of Test	102
4.2.2. Standard Chamber Vacuum Curve, etc.	104
4.3. Power Failure Protective Measures	105
4.4. Other Remarks	108
4.5. Documents to be Submitted at K/O Meeting	114
Appendix A Correspondence Table of Channels between Terminal Boards inside Vessel and Data Logger	s A-0

List of Figures

Figure 2-1 External View of 6 mp Radiometer Space Chamber	2
Figure 2-2 System Diagram and Tree Diagram of 6mp Radiometer Space Chamber Facility	
Figure 2-3 Diagram of Monitor and Control System	5
Figure 2-4 External View of TS Installation Device	8
Figure 2-5 Supporting Bench with Cooling Panel	11
Figure 2-6 Supporting Bench	11
Figure 2-7 External View of Power Supplies for Heat Sources	13
Figure 2-8 System Diagram of Vibration Isolation System	15
Figure 2-9 Optical Bench	16
Figure 2-10 Seismic Slab	17
Figure 2-11 System Diagram of Vibration Analyzer	19
Figure 2-12 System Diagram of Data Acquisition System	20
Figure 2-13 Clean Booth	22
Figure 2-14 Calorimeter	24
Figure 2-15 WBD Example of Calorimeter to Power Supply for Heat Sources	25
Figure 3-1 System Diagram for Operation in Preparation Room	27
Figure 3-2 Configuration of Devices in Measurement and Control Room	28
Figure 3-3 Configuration of Feed-through Terminal Nozzles	29
Figure 3-4 WBD Diagram of Feed-through Terminal	34
Figure 3-5 WBD Diagram of Signal Lines for TS	35
Figure 3-6 WBD Diagram of EP Lines for TS	36
Figure 3-7 WBD Diagram of Thermocouples/Calorimeters for TS, and Thermocouple Spare Lines	37
Figure 3-8 WBD Diagram of Temperature Sensors for TS	38
Figure 3-9 WBD Diagram of SBG Temperature Measurement	39
Figure 3-10 WBD Diagram of 2 kW IR Power Supply Rack	40
Figure 3-11 WBD Diagram of 60W IR Power Supply Rack	41
Figure 3-12 Feed-through Terminal for Coaxial Cables of TS	42
Figure 3-13 Inner-vessel Permanent Terminal Boards – I, II, III	43
Figure 3-14 External Input Terminal Boards – I, II	44
Figure 3-15 Thermocouple Socket Contact (manufactured by Hitachi Power Semiconductor Device, Ltd.)	45
Figure 3-16 Configuration of Hard Ports	47
Figure 3-17 Load Capacity of Supporting Benches with and without Cooling Panel	48
Figure 3-18 Load Capacity of Body Shroud Hard Port	48
Figure 3-19 Schematic View of Hard Port for Optical Bench Maintenance	49
Figure 3-20 System Diagram of Ports for TS	53
Figure 3-21 Diagram of Grayloc Connector for LN ₂	54
Figure 3-22 Diagram of Supply Port Flange for GN ₂	55
Figure 3-23 Procedure of TS Installation	57
Figure 3-24 Diagram of Optical Window Mounting Flange	58

Figure 3-25 Optical Window	59
Figure 3-26 Mounting Positions of Optical Windows	60
Figure 3-27 Work Floors inside Vacuum Vessel	62
Figure 3-28 Movable Operation Bench	63
Figure 3-29 Working Platform	64
Figure 3-30 Diagram of SBG Support	65
Figure 3-31 Grayloc Connector for SBG-cooling He	65
Figure 3-32 Work Floor Rails (when mounting SBG)	65
Figure 3-33 System Diagram of Holistic System	65
Figure 3-34 System Diagram of Power Supply Racks for IR Heaters	66
Figure 3-35 Connection of RTDs	80
Figure 3-36 Wire Breakage Detection Circuit	81
Figure 3-37 Outline Flow of Clean Booth Operation	85
Figure 3-38 Height inside Clean Booth	
Figure 3-39 Configuration of Clean Booth Ducts	
Figure 3-40 Mounting Bench (Large)	91
Figure 3-41 Configuration of Distribution Boards/Plug Socket Boards	
Figure 3-42 WBD Diagram of Distribution Boards	
Figure 3-43 Specifications of Socket at Lower Part of Distribution Board and Plug Socket Board (A)	
Figure 3-44 Circuit Diagram of Branch Power Board for Users	
Figure 3-45 Movable Range of Crane in Each Room	
Figure 3-46 Diagram of Installation Sites for NVR Plates	
Figure 4-1 Test-related Work Flow	101
Figure 4-2 Vacuum Curve in Standard Chamber, etc.	104
Figure 4-3 Standard Flow in Momentary Power Interruption and Power Failure	107
Figure 4-4 Inner-Chamber Pressure Transition during 20-minute Power Failure	108
Figure 4-5 Emergency Stop Switch inside Chamber	111
Figure 4-6 Locations of Emergency Stop Switches in Preparation Room and Measurement & Control Roo	om 112
Figure 4-7 Location of Emergency Stop Switch on Emergency Stop Console Panel in Measurement &	Control
Room	112
Figure 4-8 Position of Emergency Stop Switch on Preparation Room Access Door Console Panel	113

List of Tables

Table 2-1 Main Performance and Facility Specifications of 6 mq Radiometer Space Chamber	4
Table 2-2 Basic Specifications of Moving Dolly	6
Table 2-3 Basic Specifications of TS Installation Dolly	7
Table 2-4 Basic Specifications of Supporting Bench with Cooling Panel	9
Table 2-5 Basic Specifications of Supporting Bench	9
Table 2-6 Basic Specifications of Power Supplies for Heat Sources	12
Table 2-7 Basic Specifications of Optical Bench	14
Table 2-8 Basic Specifications of Vibration Analyzer	
Table 2-9 Basic Specifications of Data Acquisition System	
Table 2-10 Basic Specifications of Clean Booth	
Table 3-1 Table of Flanges (1/2)	
Table 3-1 Table of Flanges (2/2)	
Table 3-2 Table of Feed-through Terminals for Current/Thermocouples (1/2) (Simplified)	
Table 3-2 Table of Feed-through Terminals for Current/Thermocouples (2/2) (Detailed)	
Table 3-3 Table of Hard Ports	46
Table 3-4 Load Capacities of Hard Ports	
Table 3-5 Load Capacity of Body Shroud Hard Ports	
Table 3-6 Load Capacity of Hard Ports on Optical Bench	
Table 3-7 List of TS LN ₂ Lines	50
Table 3-8 General Description of TS Cooling/Heating I/F	51
Table 3-9 Rough Levels of LN ₂ Feed Rate and Valve Opening Percentage	51
Table 3-10 Basic Specifications of SBG I/F	65
Table 3-11 Composition of Primary Components in Power Supplies for Heat Sources	65
Table 3-12 Control System of Power Supply Rack	67
Table 3-13 Control Methods and Descriptions of PID Control (1/2)	68
Table 3-13 Control Methods and Descriptions of PID Control (2/2)	69
Table 3-14 Table of Limit Functions (1/3)	72
Table 3-14 Table of Limit Functions (2/3)	73
Table 3-14 Table of Limit Functions (3/3)	74
Table 3-15 Contents of Alert for Each Detection Item (1/2)	75
Table 3-15 Contents of Alert for Each Detection Item (2/2)	76
Table 3-16 Correspondence between Acquisition Data and Channel Numbers	79
Table 3-17 Recommended Usage Instructions for Wire Breakage Detection Function (1/2)	82
Table 3-17 Recommended Usage Instructions for Wire Breakage Detection Function (2/2)	83
Table 3-18 List of Facility Belongings	88
Table 3-19 Basic Descriptions of Hand-pallet Truck	89
Table 3-20 List of Distribution Boards for Users	
Table 3-21 Specification of Cranes	
Table 3-22 Specification of UPS	

Table 4-1 Test Methods Corresponding to Test Purposes	103
Table 4-2 Summary of Kinds of Tests and Environmental Conditions	103
Table 4-3 Requirements for Facility	115
Table 4-4 List of Nonmetallic Articles Brought into Space Chamber	116

Appendix A

Table A-1 Correspondence Table of Channels between Terminal Boards inside Vessel and Data Loggers	(1/5)	1
Table A-1 Correspondence Table of Channels between Terminal Boards inside Vessel and Data Loggers	(2/5)	2
Table A-1 Correspondence Table of Channels between Terminal Boards inside Vessel and Data Loggers	(3/5)	3
Table A-1 Correspondence Table of Channels between Terminal Boards inside Vessel and Data Loggers	(4/5)	4
Table A-1 Correspondence Table of Channels between Terminal Boards inside Vessel and Data Loggers	(5/5)	5

1. Introduction

This users' manual is to provide necessary information to the users of 6mφ Radiometer Space Chamber (referred to as "this facility" hereafter) located in the 6mφ Radiometer Space Chamber Building.

This facility is used for optic tests on different kinds of earth observation radiometers to be mounted on satellites, or thermal vacuum tests on mid/small-size satellites and satellite components, in simulated space environments on ground.

This facility can reduce the transmission of micro tremors from the ground or the vibration from vacuum pumps, etc. to a test specimen (**I** abbreviated as TS hereafter) to the maximum degree, by adopting an isolated base, so that high-precision optical instruments, etc., can be the subject for a test. Furthermore, this facility achieves space with high cleanliness, with its design to satisfy the cleanliness requirements for optical instruments while dealing with both particulate and molecular contamination.

The major environments in outer space are high vacuum, cryogenic shade, etc. On the geostationary orbit which is about 36,000 km above the surface of the earth, those environments respectively reach the levels of about 1.3×10^{-11} Pa and 3K, the latter being an infinite heat absorber.

However, it is financially unfeasible to simulate such environments on ground as they are, and therefore this facility provides vacuum pressure of 1.3×10^{-4} Pa or less and shroud temperature of 100K or lower. In order to meet the request of temperature planes to be 100K or lower, meanwhile, this facility is equipped with hard ports to mount a space background panel, as well as a He refrigerator and a He supply flange which cool down the panel plane to 20K.

We can verify the reliability of satellite behaviors in space by extrapolating them from the accuracy assessment on thermal designs under the simulated environments mentioned above.

2. Brief Overview of this Facility

2.1. System Outline

The external view and system diagram of this facility are shown in Figures 2-1 and 2-2, respectively.

Figure 2-1 External View of 6 mo Radiometer Space Chamber

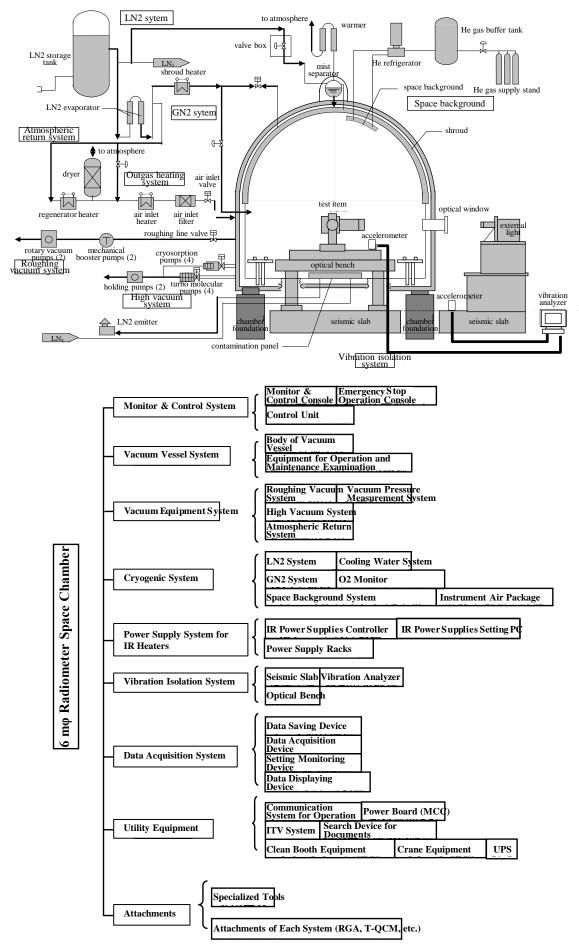
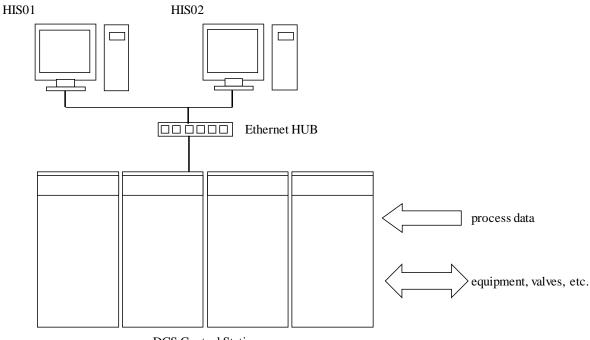


Figure 2-2 System Diagram and Tree Diagram of 6mø Radiometer Space Chamber Facility

2.2. Main Specifications

The main specifications of the whole facility are shown in Table 2-1.


item	performance/specifications	notes
(1) space chamber	mailbox type	
(a) usable dimensions	6m (dia) × 8m (L)	dimensions inside shroud
(b)access door of chamber	6m (W) × 5.1m (H)	incl. dolly
(c) shroud temperature	100K or lower,	
	or ambient temperature ~ 60° C	
(d)Max. weight carriable in chamber	4,000 kg	incl. jig
(e) vacuum pressure		
① operational vacuum	1.33×10 ⁻⁴ Pa or less	
pressure	$(1 \times 10^{-6}$ Torr or less)	
② ultimate vacuum pressure	1.33×10 ⁻⁵ Pa or less	*1
	$(1 \times 10^{-7}$ Torr or less)	
(f) pumpdown / repressurizing time	8 hours or less	
(g)Max. consecutive operation days	45 days	for 1-min. sampling cycle
(h)black space	95% or more	when using supporting bench with
		cooling panel
(i) space background temperature	20K or lower	
(2) power supply for IR heaters		
(a) power supplies for heat sources	4 racks	6mφ 60W power supply rack-1: 25
		6mφ 2 kW power supply rack-1: 10
		6mφ 2 kW power supply rack-2: 10 ^{*2}
		6mφ 3 kW power supply rack-1: 10
(3) vibration isolation system		
(a) optical bench dimensions	$4m \times 6m \times 0.5m$ (D)	permanently equipped in chamber
(b)optical bench eigenvalue	30Hz or higher	
(c)relative displacement vibration	1.0 μm 0-P or less	bet. bench in chamber and slab outside
(d)relative angle vibration	0.3 µrad P-P or less	bet. bench in chamber and slab outside

*1 w/o TS, TS supporting bench, or IR radiation; shroud being cooled with LN₂, within 8 hours after the start of pumpdown.

*2 2 kW power supply rack-2 and power supplies-3, 4 are not available.

2.2.1. Monitor and Control System

This system enables intensive monitoring of the operational status in the space chamber via Human I/F Stations (HIS) based on the process data of the vacuum equipment system, cryogenic system, etc., collected in the DCS control station (Figure 2-3.)

DCS Control Station

Figure 2-3 Diagram of Monitor and Control System

2.2.2. Vacuum Vessel System

This system consists of a vacuum vessel and equipment for operation and maintenance. The brief explanation of the system is provided as follows.

(1) Vacuum vessel

This cylindrical stainless-steel vessel is shaped like a mailbox, and has a storage space of 6-meter diameter \times 8-meter long (inside shroud.)

The mailbox-like shape of the vacuum vessel achieves a spacious working area and easy access to a TS.

The vacuum pressure inside the vessel is measured by the Pirani gauge and ionization gauge mounted on the vessel. Their measurement ranges cover successive measurement from the atmospheric pressure to the ultimate vacuum pressure range, and the data is displayed on the control and monitor console in the measurement and control room. They are also capable of continued measurement during power failure, with the help of an uninterruptible power supply system.

The vacuum vessel has optical windows to be used for radiometer optical confirmation tests on both sides of the vacuum vessel body part and the access door for a TS. There also are windows for alignment measurement on side and top of the body part, and on the access door.

The alignment measurement windows have mounting seats for the ITV facility (cf. section 2.2.8) to monitor the inside of the vacuum vessel.

5

(2) TS installation device

The TS installation device is made up of a moving dolly, a TS installation dolly, and a supporting bench with a cooling panel (or a supporting bench w/o a cooling panel.) The moving dolly and the TS installation dolly can be moved with human power, owing to the air bearings attached to them which slightly lift them up. Each of the dollies is briefly explained below. As for how to operate the TS installation device, refer to 3.3.1.6. Its external view is shown in Figure 2-4.

(a) Moving dolly

The moving dolly can freely move in the preparation room with the TS installation dolly, the TS supporting bench, and a TS mounted upon it. It also has a bridge board for moving the TS installation dolly onto the optical bench in the vacuum vessel. Its brief specifications are shown below.

item	specification
dimensions	$5m (width) \times 7.25m (length) \times 0.85m (height) (from floor surface)$
load capacity	Max. 12,400 kg (incl. TS and jig = 4,000 kg)
own weight	7,700 kg
drive system	pushed by hands
movable range	unpacking room, preparation room
length of air-supplying hose	30m
movable load (Max. pulling force)	Max. 52 kg
air consumption	2.0 Nm ³ / min
air pressure	0.39 MPa or more

Table 2-2 Basic Specifications of Moving Dolly

(b) TS installation dolly

The TS installation dolly is used for mounting and dismounting the supporting bench with a cooling panel or the supporting bench without a cooling panel from/onto the moving dolly onto/from the optical bench in the vacuum vessel. The basic specifications of the TS installation dolly are shown below.

item	specification
dimensions	$3.19m \text{ (width)} \times 5.16m \text{ (length)} \times 0.145m \text{ (height)}$
	(to the upper end of the jack)
load capacity	6,800 kg (incl. TS and jig = 4,000 kg)
own weight	2,100 kg
drive system	pushed by hands
movable range	moving dolly ~ on the optical bench inside the vacuum vessel
length of air-supplying hose	10m
air consumption	2.0 Nm ³ / min
air pressure	0.39 MPa or more

Table 2-3 Basic Specifications of TS Installation Dolly

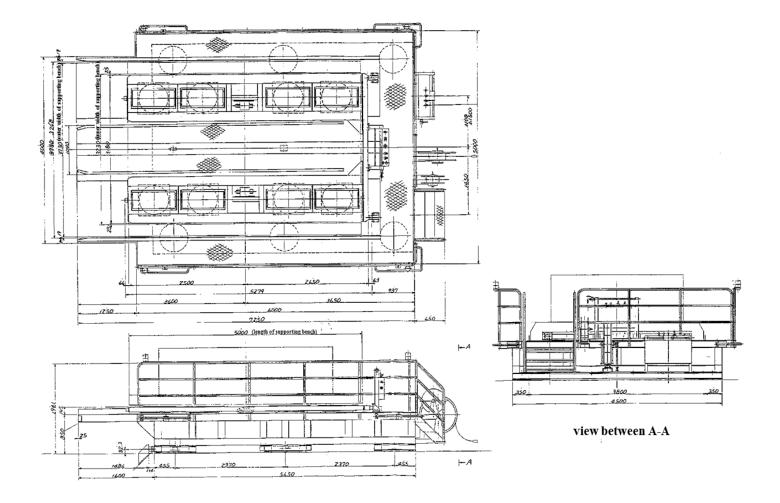


Figure 2-4 External View of TS Installation Device

(c) TS supporting bench

Those supporting benches are used to mount a TS to place it inside the vacuum vessel. That is, a TS is carried into the vessel by a TS installation device to be placed on the optical bench, while mounted on a supporting bench all the way through. TS supporting benches can be mainly classified into two kinds; one is a supporting bench with a cooling panel used for thermal vacuum tests, and the other is a supporting bench (for optic tests) used for optical performance confirmation tests. The basic specifications of the former are shown in Table 2-4 and Figure 2-5, while those of the latter are shown in Table 2-5 and Figure 2-6. As can be seen from Tables 2-4 and 2-5, their load capacities withstand a TS (including a jig) weighing up to 4.0t. Information on the I/F, e. g., the diameters of the screw holes of hard ports, etc., is provided in section 3.3.1.3.

item	specification
dimension	$5m (width) \times 3.5m (depth)$
Max. load mass	4,000 kg
mass of body	about 2,800 kg
material	aluminum alloy
surface temperature	100K or lower
	(two out of the LN ₂ lines for cooling parts of a TS are used)

Table 2-4 Basic Specifications of Supporting Bench with Cooling Panel

Table 2-5 Basic Specifications of Supporting Bench

item	specification
dimension	5m (width) \times 3.5m (depth)
Max. load mass	4,000 kg
mass of body	about 2,200 kg
material	alluminum alloy

2.2.3. Vacuum Equipment System

This system consists of low and high vacuum systems which vacuum the vacuum vessel from the atmospheric pressure to the high vacuum, and an atmospheric return system which raises the pressure inside the vacuum vessel from the vacuum state to the atmospheric pressure condition with GN₂ and dry air.

The standard vacuum curve (without a TS) during a thermal vacuum test is shown in Figure 4-2.

2.2.4. Cryogenic System

This system consists of an aluminum-alloyed fin-tube type shroud that is cooled down to 100K or lower by means of LN_2 to establish cryogenic environment, and SBG (space background) cooling lines in the vacuum vessel that are cooled down to 20K or lower by He gas to simulate deep space for radiation cooling. The SBG itself is to be prepared by users. Refer to section 3.3.2.1 for the I/F to the facility. The SBG cooling lines are currently in a dormant state, being not ready for use. Users are to contact the Environmental Test Technology Unit if they want to use SBG cooling lines.

Note) It takes 12 months or longer to get them ready for use.

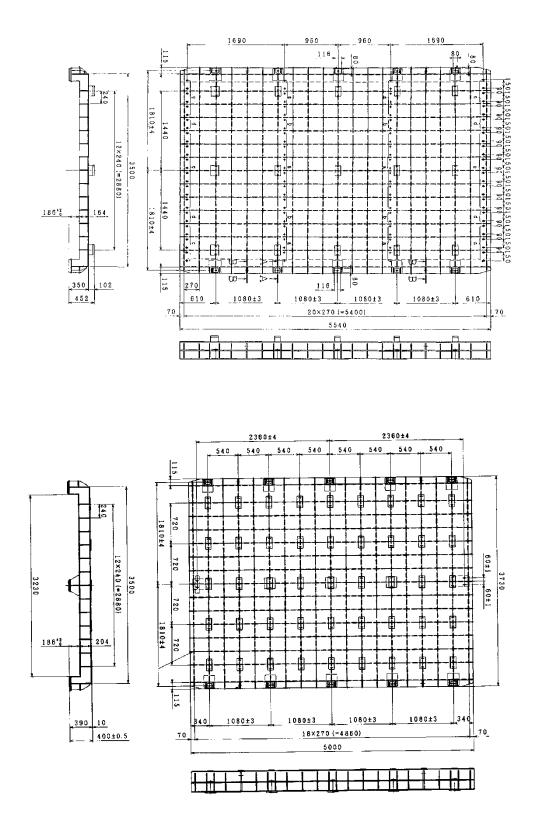


Figure 2-5 Supporting Bench with Cooling Panel Figure 2-6 Supporting Bench

2.2.5. Power supply System for IR Heaters

These devices are used for IR radiation thermal balance/thermal vacuum tests performed in $6m\phi$ radiometer space chamber, to supply specified EP to IR lamps as the IR light source or heaters which provide external thermal input to a satellite, or to simulation heaters for the heat from the equipment mounted on a satellite.

The test data collected by those devices are transmitted to the data acquisition system in $6m\phi$ radiometer space chamber and recorded thereat.

item	specification				
name	6mφ 60W power	6mø 2 kW power	6mø 2 kW power	6mø 3 kW power	
	supply rack -1	supply rack -1	supply rack -2	supply rack -1	
qty	25	10	10	10	
output	DC60V	DC100V	DC100V	DC100V	
voltage	DC00V	DC100V	DC100V	DC100V	
output	1A	20A	20A	30A	
current	174	2011	2011	JUA	
output EP	60W	2 kW	2 kW	3 kW	
control					
method	remote control (temperature / constant power / manual voltage output control) / local control				
notes	2 kW power supply rack -2 and power supplies No. 3, 4 are not available.				

Table 2-6 Basic Specifications of Power Supplies for Heat Sources

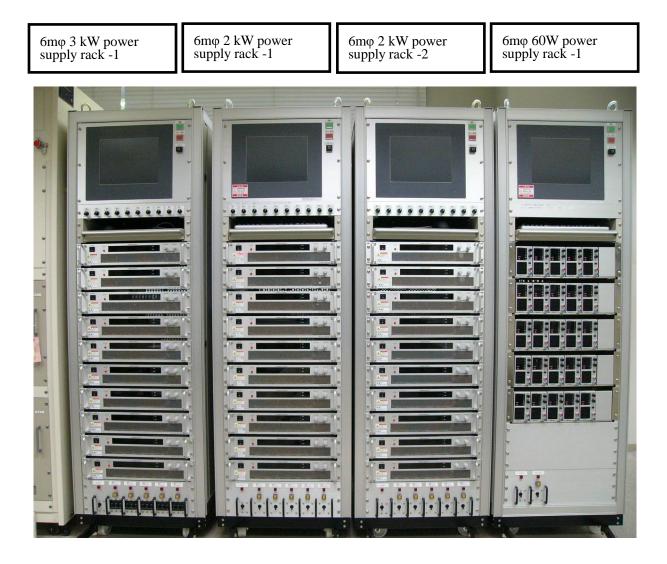


Figure 2-7 External View of Power Supplies for Heat Sources

2.2.6. Vibration Isolation System

This system, which is made up of an optical bench, a seismic slab, and a vibration analyzer, is established to avoid the bad influence of vibration that is propagated from outside during a radiometer optical confirmation test performed in the space chamber. The schematic view and basic specifications of this system are shown in Figure 2-8 and below, respectively.

(1) Optical bench (Figure 2-9)

This bench is permanently equipped in the vacuum vessel, and used with a TS supporting bench, on which a TS is mounted, fixed onto the bench. Its main posts are directly connected to the seismic slab via bellows, penetrating through the vacuum vessel, which perfectly insulates vibration from the vacuum vessel system.

item	specification
dimensions	$6m (length) \times 4m (width) \times 0.5m (height)$
mass	about 6,500 kg
material	alluminum alloy (A5083P-O)
structure	integrated with a weld box
main post	6 stainless steel pipes
bellows	stainless steel
surface roughness	25 μm or less
flatness	600 μm or less
eigen frequency	optical bench alone: 30Hz or higher in all the directions
	w/ supporting bench: about 27Hz in Y direction

(2) Seismic slab (Figure 2-10)

The seismic slab is a large slab made of reinforced concrete which is separated from the building foundation, the chamber foundation, and the machine foundation of the vacuum pumps, etc., to isolate vibration from them.

When performing an optical confirmation test on radiometers, etc., relative vibration can be controlled by placing the external light source on this seismic slab, that is, placing the light source and a TS on the same foundation.

• Eigen frequency: 20Hz or higher (for up/down and bending modes, according to analysis)

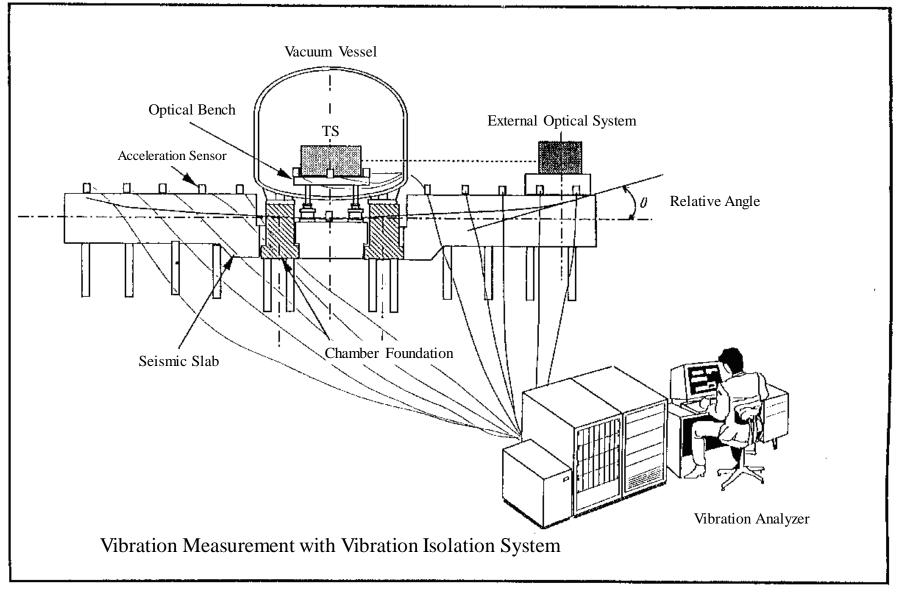


Figure 2-8 System Diagram of Vibration Isolation System

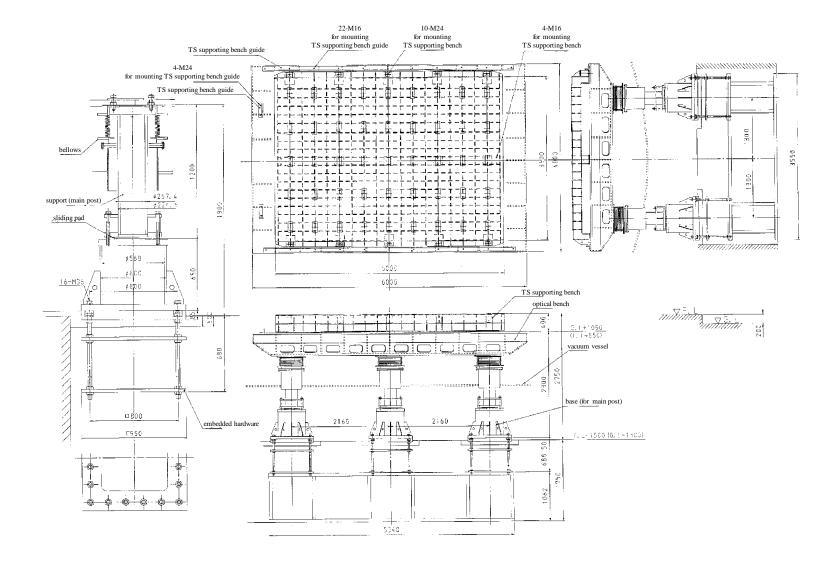


Figure 2-9 Optical Bench

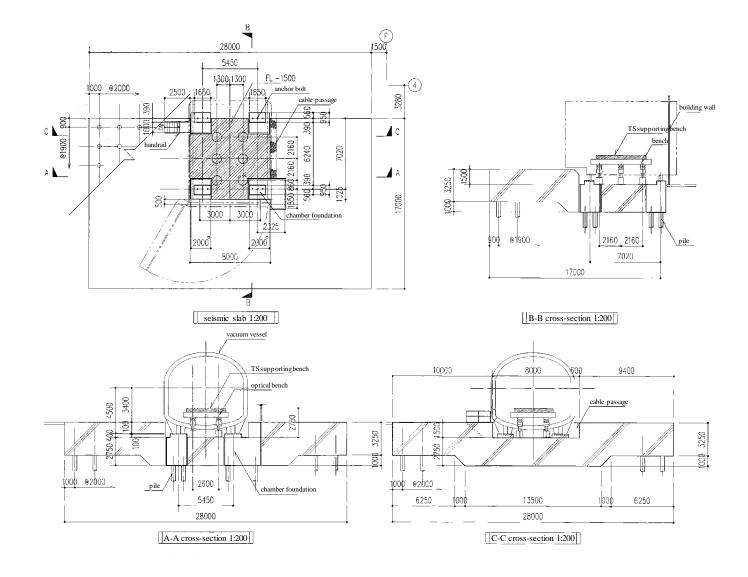


Figure 2-10 Seismic Slab

(3) Vibration analyzer

The purpose of this vibration analyzer is to assess and verify the feasibility of an optical property verification test on a TS especially in micro vibration environments amid the constraints of the vibration turbulence specific to this facility. It is made up of measuring devices, e. g., accelerometers, drivers, etc., and a work station for analyzing data. The basic specifications and system diagram of the vibration analyzer are shown in Table 2-8 and Figure 2-11, respectively.

If it is planned to be used, contact us 6 months in advance, because it requires a prior-to-use checking by the facility-side personnel.

item	specification
data to be dealt with	acceleration, relative displacement, relative angle
measurement spots	inside vacuum vessel: optical bench, shroud, vacuum vessel
	outside vacuum vessel: seismic slab, optical window
input	deigital signals via accelerometers
output	output to monitor, or in digital (binary/text)/analogue data
frequency range	1Hz ~ 1,000Hz
number of measurement channels	31 channels (incl.)
	for accelerometers: 30 chs (inside vacuum vessel: 15 chs, outside
	vacuum vessel: 15 chs)
	for laser doppler displacement gauge: 1ch
contents of data analysis	• PSD analysis • transfer function analysis • waveform analysis • FFT
	analysis
accelerometer specification*	measurement range (±G): 2.5
cryogenic accelerometer (393M33)	sensitivity (gal/V): 1,000
8 sets	resolution (µG): 100
	working temperature range (°C): $-196 \sim +121$
	measurement range (±G): 0.5
high sensitivity accelerometer (393B12)	sensitivity (gal/V): 100
3 sets	resolution (µG): 8
	working temperature range (°C): $-46 \sim +82$
	measurement range (±G): 0.5
high sensitivity accelerometer (393B31)	sensitivity (gal/V): 100
12 sets	resolution (µG): 1
	working temperature range (°C): $-18 \sim +65$
calibration equipment	LV-2100 manufactured by Ono Sokki Co., Ltd. (laser doppler
	displacement gauge)

* Accelerometers are fixed with heliserts. Pay enough attention to the screw parts, because they can easily be jammed.

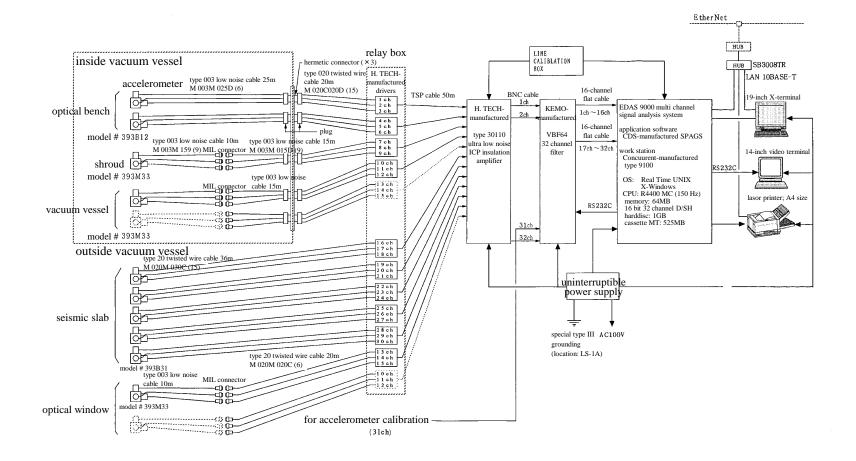


Figure 2-11 System Diagram of Vibration Analyzer

2.2.7. Data Acquisition System

This system possesses a function to acquire, process, and save TS data and facility data during a test on a satellite, etc., performed in this facility, while displaying the data in real time to the operator (viz. monitoring function.) Its basic specifications are shown below. The system diagram of the acquisition system and a correspondence table of thermocouple channels are shown in Figure 2-12 and Appendix A, respectively.

item	specification	
Max. consecutive test days	45 days (for sampling cycle = 1 minute)	
number of measurement points	thermocouple: 550 chs	
	TQCM: 4 chs	
measurement accuracy	(1) temperature: $\pm 1.0^{\circ}$ C	
	uncertainty (incl. thermocouple sensors): 0.9° C (k = 2)	
	$: 1.4^{\circ}C \ (k=3)$	
	(2) voltage: measurement range $\pm 0.1\%$	
sampling rate	1 time/min OR 1 time/2 mins	
	Min. interval for thermocouple temperature measurement section = 1 sec	
compatible thermocouple	T-type	

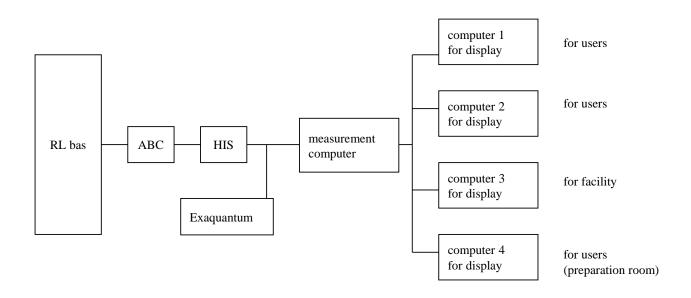


Figure 2-12 System Diagram of Data Acquisition System

2.2.8. Utility Equipment

(1) ITV facility

The ITV facility is a TV system to monitor the ongoing state of equipment and work in this facility from the measurement and control room. There are two cameras with a turning and zooming function installed in the preparation room. There also exist two portable cameras (installed on the alignment windows of the vacuum vessel from outside) to monitor the state inside the vacuum vessel. One of them is a highly-sensitive type and the other is a normal type. There is no ITV camera installed inside the vacuum vessel. The entire images taken by the cameras can be recorded up to 30 days in time-division time lapse videos, allowing the required images to be copied on normal videos.

The jacks of the image/EP cables for the portable cameras are to be plugged in/out after making sure that the power is turned off.

(2) Communication system for operation

This system is made up of wired and wireless paging devices (multi-function telephones and cellular phones (digital)) which enable mutual communication among test-concerned personnel and announcement of instructions during the operation of the facility or preparation for testing on a TS.

(3) Clean booth

A clean booth is designed to achieve and maintain a highly clean environment for the preparation and execution of tests. Its basic specifications and external view are shown below and in Figure 2-13, respectively.

item	specification	
performance, structure	cleanliness: ISO class 5 (equivalent of FED-STD-209 class 100)	
	temperature: set temperature $(20 \sim 23^{\circ}C) \pm 1^{\circ}C$	
	humidity: $50 \pm 10\%$	
	dimensions: 6m (width) \times 4.6m (depth) \times 3.5m (height)	
	mass: 3,000 kg	
location	inside the preparation room or vacuum vessel	
installation environment		
(inside vacuum vessel, preparation room)	cleanliness: ISO class 7 (equivalent of FED-STD-209 class 10,000)	
	temperature: $23 \pm 3^{\circ}C$	
	humidity: $50 \pm 10\%$	

Table 2-10 Basic Specifications of Cle	an Booth
--	----------

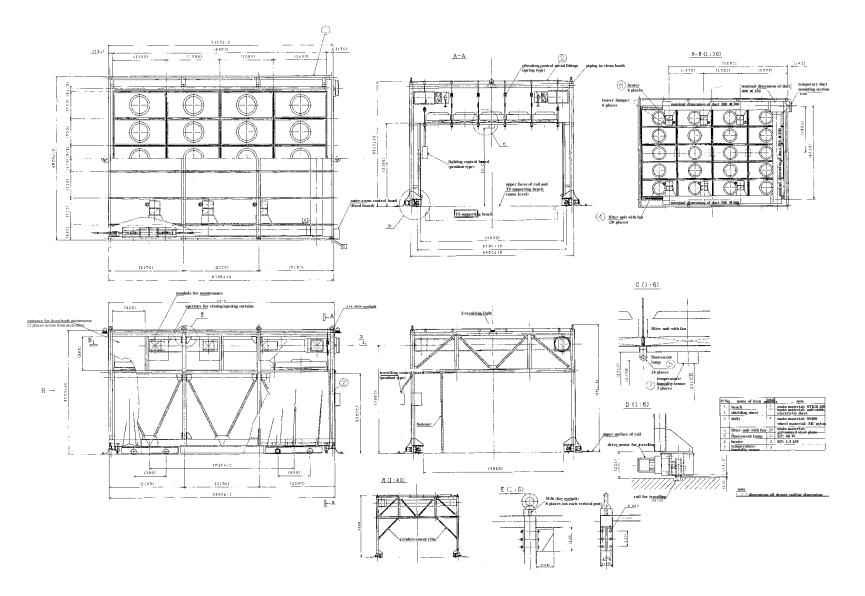


Figure 2-13 Clean Booth

2.2.9. Gadgets and Spares

(1) Mass-filter-type mass spectrometer (QMG220M3): 1 set

This device measures and analyzes the remnant gas components inside the vacuum vessel with its quadrupole analyzer.

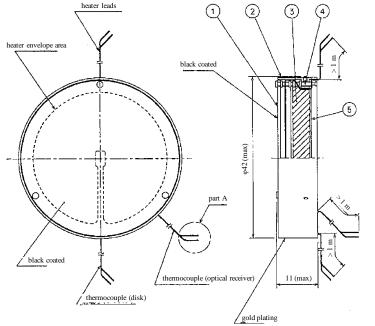
Mass measurement range: $M/e = 1 \sim 300$

(2) Calorimeter (cf. Figures 2-14, 15): 30 sets

A calorimeter measures the radiant energy irradiated on a satellite from external heat sources, e. g., an IR lamp, for the purposes of setting, monitoring, and controlling test conditions for each test on a satellite, etc.

Measurement range: $0.1 \text{ kW/m}^2 \sim 2.0 \text{ kW/m}^2$ Compatible thermocouple: copper-constantan

- (3) TQCM (Thermoelectric Quartz Crystal Microbalance): 4 sets
 - (a) TQCM


Application purpose: for monitoring contamination Model #: MK10 sensor, MODEL 1900 processor, MODEL 1800 temperature controller, manufactured by QCM Research Corp.

(b) TQCM mounting table

Mounting part: hard points on the TS supporting bench

Note) Cautions for mounting TQCM sensors

- The temperature of a TQCM sensor may not go down if it is surrounded by heat sources, e. g., IR panels, due to the thermal input from them. In that case, measures are to be taken by mounting the sensor after its heat sink surface is cooled down, for example.
- When using TQCM with its HEAT PUMP (Peltier device) turned on, use it at -110° C or higher.

|--|

enlarged view of part A (appearance of contact pin) non scale

 manufactured by
 O6O3-34-2O39 (Cu)

 Japan Deutsches co.
 105372 (Co)

note

specification

measurement range: 0.1~2.0 kW/m2

reproducibility: within $\pm 0.5\%$ (note 1) accuracy: within $\pm 0.3\%$ (note 1)

response time: within 10 sec (note 2)

solar absorptivity: $0.96 \pm 0.0.2$ (note 6)

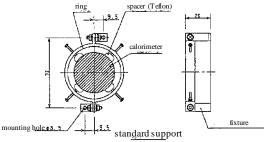
misphere IR emissivity: 0.88 ± 0.04

view angle: hemisphere

output level: -5 ~ + 7 mV weight: 10 g or less (note 4) applied thermocouple: copper-constantar 1. It denotes the tolerance to the full scale in measurement range. 2. It denotes the time to take for temperature on the optical receiver to change by 10 °C when 1 solar is radiated on it with the initial temperature of $-180^{\circ}C \sim 100^{\circ}C$.

3. Size tolerance shown below is to be followed when not specified.

classification by nominal size	tolerance	
~ 6	±0.6	
over 6 ~ 18	±1	
over 18 ~ 50	±1.3	
over 50 ~ 120	±2	
over 120 ~ 250	±2.5	
over 250 ~ 500	±3.2	
over 500 ~ 1000	±5	
over 1000 ~ 2000	±8	
over 2000 ~ 3150	±10	


4. Heater leads, thermocouple wires, contact pins, and standard supports are excluded.

5. Heater leads and thermocouple wires are to have a $0.1\mbox{-}mm\mbox{-}\phi$ central line and 1-m length or more.

6. The measurement values are based on the sample coating.

1	name	material c	uanti	y
\bigcirc	optical receiver	alumina	1	
$\overline{\mathbb{O}}$	case	Al	1_]
3	insulation	Al Mylar	1	
4	support	polyimide resin	3	
(G)	disc	Al	1 1	

(note 6)

Figure 2-14 Calorimeter

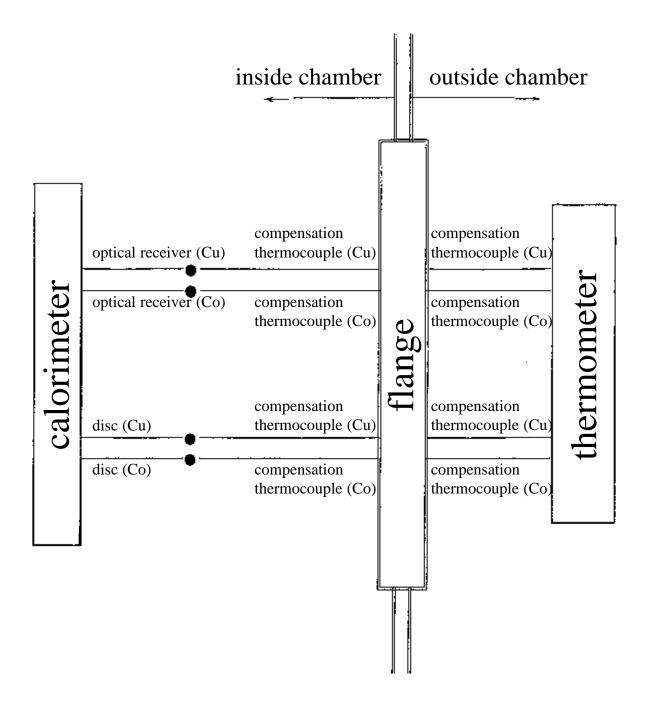


Figure 2-15 WBD Example of Calorimeter to Power Supply for Heat Sources

3. User I/F

3.1. Configuration between Inside and Outside of Space Chamber

A system diagram of the post-TS-installation state of this facility is shown in Figure 3-1.

3.2. Measurement and Control Room

The measurement and control room (1F) possesses controllers and monitors for each of the control and monitor system and the data acquisition system.

The measured TS temperature, etc., can be checked in the data acquisition system, and the operation of the setting monitoring computer, T-QCM console, vibration analyzer, clean booth operation console, and the power supplies for heat sources is to be executed by users. If a TS is to be partially cooled or heated (cf. section 3.3.1.5), inform the company in charge of the facility of the automatic valve aperture percentage.

Figure 3-2 shows the configuration of the devices in the measurement and control room.

3.3. Device I/Fs

3.3.1. Vacuum Vessel

3.3.1.1. Nozzle Configuration in Vacuum Vessel

There are nozzles with flanges all over the vacuum vessel as the I/Fs to connect the inside and outside of the vessel (cf. Figure 3-3.) The nozzles not being used by the facility are available to users.

Especially, the main chamber body (to the measurement and control room side) has flanges for a TS with specific purposes as signals, EP, thermocouples, waveguides, etc.

In case feed-through terminals other than the ones prepared by the facility are necessary, users are to prepare the flanges with feed-through terminals to satisfy their designated purposes. A table of flanges is shown in Table 3-1.

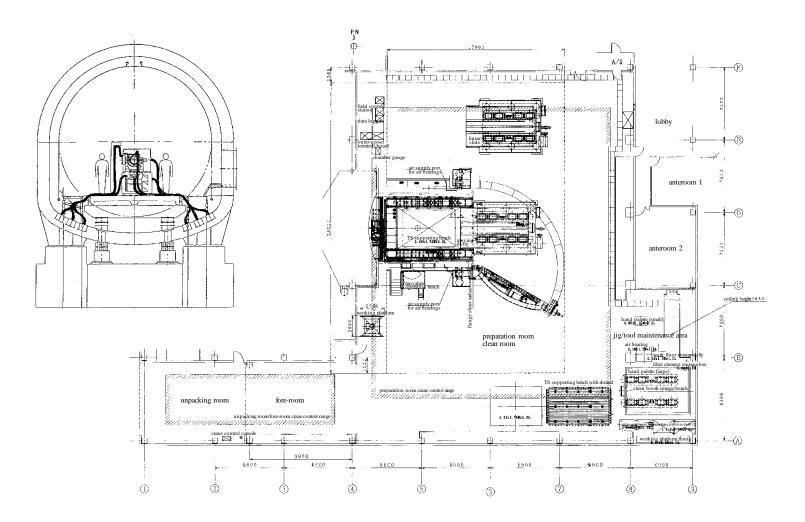


Figure 3-1 System Diagram for Operation in Preparation Room

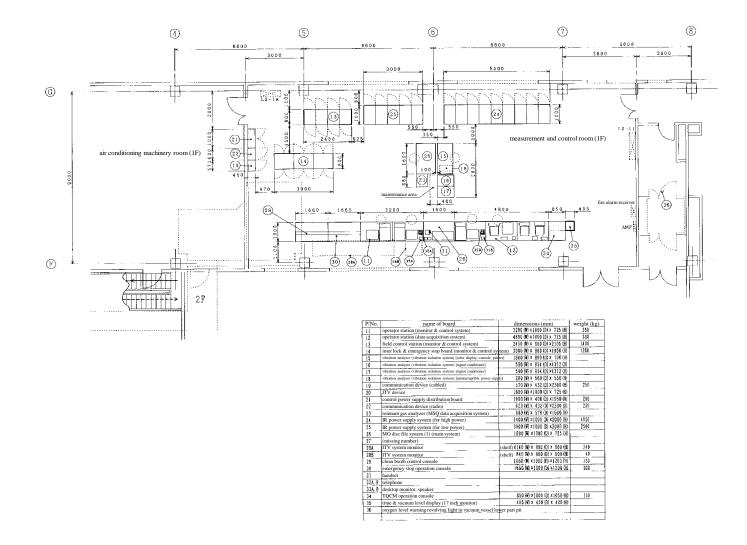


Figure 3-2 Configuration of Devices in Measurement and Control Room

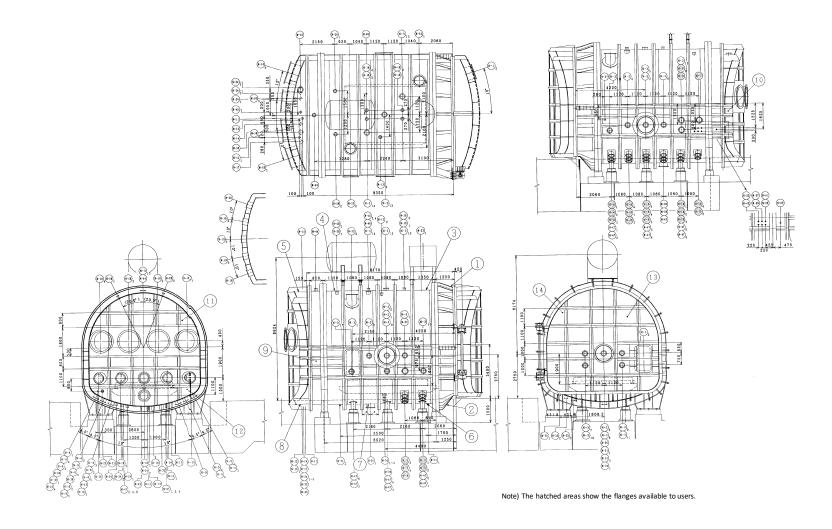


Figure 3-3 Configuration of Feed-through Terminal Nozzles

Table 3-1	Table	of Flanges	(1/2)
-----------	-------	------------	-------

sign	nominal φ	qty	model #	name	note
N-1	1500 × 800	2	SPECIAL	man door	straight cylindrical body 1, access door 1
N-2	1000φ	3	SPECIAL	optical window	straight cylindrical body 2, access door 1
N-3	250A	19	JIS VG	alignment window	straight cylindrical body 11, upper part 3, access door 5
N-4	300A	4	JIS VG	for CC thermocouples (incl. calorimeters, spares)	for TS thermocouples
N-5	300A	4	JIS VG	current inlet terminal	for IR power supplies (N-54 is for spare)
N-6	300A	5	JIS VG	current inlet terminal (100V, 5A)	for TS signals
N-7	300A	1	JIS VG	high frequency output signal (coaxial)	
N-8	300A	2	JIS VG	for waveguides	only nozzles; N-81 can also be used for the alignment window.
N-9	300A	1	JIS VG	current inlet terminal (200V, 10A)	for TS EP
N-10	300A	5	JIS VG	spare nozzle	
N-11	150A	1	stub end	LN2 piping	IR gauge
N-12	125A	1	stub end	LN ₂ piping	
N-13	150A	2	stub end	LN ₂ piping	
N-14	200A	1	stub end	LN ₂ piping	
N-15	250A	1	stub end	LN ₂ piping	
N-16	150A	4	stub end	LN ₂ piping	
N-17	250A	1	stub end	He piping	
N-18	1250A	4	SPECIAL	cryosorption pump	
N-19	500A	4	JIS VG	turbo molecular pump	
N-20	500A	1	JIS VG	low vacuum system, vacuuming port	
N-21	100A	1	JIS VG	dry air inlet port	
N-22	32A	1	ICF 70	residual gas analyzer pipe port	
N-23	300A	1	JIS VG	current inlet terminal	for vibration analysis
N-24	150A	3	JIS VG	GN ₂ entrance	
N-25	20A	1	JIS VG	Bourdon tube pressure gauge	
N-26	32A	1	ICF 70	Pirani gauge	
N-27	32A	1	ICF 70	BA gauge	
N-28	100A	2	JIS VG	ionization gauge (nude gauge)	
N-29	32A	1	ICF 70	ionization gauge (wide range A)	
N-30	250A	1	JIS VG	GN ₂ exit	

N-31	50A	2	JIS VG	for scavenger cryopanel drains	
N-32	300A	1	stub end	for partial cooling of TS	IR gauge
N-33	600A	2	JIS VG	for permanently equipped lighting	
N-34	500A	2	JIS VG	manhole (for operation)	on the chamber head 1, on the bottom of the body: 1
N-35	150A	3	JIS VG	GN ₂ exit	
N-36	15A	1	_	GN ₂ entrance	
N-37	32A	1	ICF 70	for safety switches	
N-38	300A	1	JIS VG	for facility, shroud temperature measurement	
N-39	300A	1	JIS VG	for facility, SBG temperature (incl. T-QCM)	
N-40	150A	1	JIS VG	safety device	attached to the vacuuming port piping of low vacuum system
N-41	32A	1	ICF 70	ionization gauge (wide range B)	
N-42	20A	1	JIS VG	diaphragm pressure gauge	
N-43	300A	1	JIS VG	current inlet terminal	for resistor temperature measurement
N-44	200A	1	stub end	LN2 piping	
N-45	150A	1	stub end	LN2 piping	
N-46	20A	1	JIS VG	oximeter	
N-47	450A	6	JIS VG	nozzle for optical bench post	

Note) The shaded lines denote the flanges available to users.

This may not be the latest edition.

3.3.1.2. WBD for EP, Signals, etc.

Refer to the following Figures and Tables for the cabling or the connector WBD between a TS and its checkout devices, etc., inside and outside the chamber, and choose the appropriate items according to the purposes.

(1)	Table of Feed-through Terminals for Current/Thermocouples (for users)	(Table 3-2)
(2)	WBD Diagram of Feed-through Terminal	(Figure 3-4)
(3)	WBD Diagram of Signal Lines (5A) for TS [plug signs A1 ~ 100]	(Figure 3-5)
(4)	WBD Diagram EP Lines (10A) for TS [plug signs B1 ~ 11]	(Figure 3-6)
(5)	WBD Diagram of Thermocouples/Calorimeters for TS, and Thermocouple Spare Lines []	olug signs C1 ~
	42, D1 ~ 5, N1 ~ 2]	(Figure 3-7)
(6)	WBD Diagram Temperature Sensors (thermistor platinum sensors) for TS [plug signs E1 -	- 13]
		(Figure 3-8)
(7)	WBD Diagram of SBG Temperature Measurement [plug sings G1 ~ 3]	(Figure 3-9)
(8)	WBD Diagram of 2 kW IR Power Supply Rack (100V, 30A) [plug signs H1 ~ 15]	(Figure 3-10)
(9)	WBD Diagram of 60W IR Power Supply Rack (100V, 3A) [plug signs J1 ~ 6]	(Figure 3-11)
(10)	Feed-through Terminal for Coaxial Cables of TS	(Figure 3-12)
(11)	Inner-vessel Permanent Terminal Boards – I, II, III	(Figure 3-13)
(12)	External Input Terminal Boards – I, II	(Figure 3-14)
	Note) For grounding the same type of plug as shown in (\mathbf{R}) is to be used which is connect	ad to $O1$ on the

Note) For grounding, the same type of plug as shown in (8) is to be used, which is connected to Q1 on the inner-vessel permanent terminal board (3); the pins A and B on Q1 respectively correspond to E3 and SE3 for grounding.

[Notes for Wiring Thermocouples]

The thermocouple terminal receptacles on the inner-vessel permanent terminal boards (Figure 3-13) are manufactured by Japan Deutsches co. while those on the external input terminal boards (Figure 3-14) are manufactured by Hitachi Power Semiconductor Device, Ltd. The two companies' receptacles have different numbers of conductors and pin configurations, which requires attention to the following matters.

- The terminal pair on the Japan Deutsches' connector that corresponds to the J-Q pair on the Hitachi Power Semiconductor Device's connector is J-Ċ, due to the lack of terminal Q.
- (2) The terminals a and b on the Japan Deutsches' connector are to be left unused.
- (3) Since the K-R and J-C pin pairs on the Japan Deutsches' connector are located away from each other, the order of WBD is to be determined with that fact taken into account.
- (4) The thermocouple plugs do not include socket contacts, which are therefore to be procured based on the specifications shown below.
 - Manufactured by Japan Deutsches co. Socket contact (Cu) : model # 0603-34-2039 Socket contact (constantan) : model # 105372
 Manufactured by Hitachi Power Semiconductor Device, Ltd. Socket contact (Cu) : Figure 3-15 NM-104-845-article # 1 Socket contact (constantan) : Figure 3-15 NM-104-845-article # 2

sign	application purpose	specification	connector #	u sabie time	situation	Figure
A	signal line	100V/5A	A1~A100	499	A29 : not available wired from inside chamber ~ external input terminal board	3-5
В	EP	100V/10A	B1~B11	44	wired from inside chamber ~ external input terminal board	3-6
С	thermocouple	CC	C1~C42	479	C3 : ch 2~12 not available	3-7
					C14:ch 12 not available	
					C28 : ch 12 not available	
					C42: all 12 chs not available	
D	calorimeter	CC	D1~D5	60		
Ν	thermocouple spare	00	N2	11	N2 : ch 12 not available	
F	thermometric resistor	-	F1~F13	30	via converter board LP9 10	3-8
	thermistor, platinum ser	sor			to data acquisition system (logger)	
н	FP	100V/30A	H1~H15	30	H1 ∼H5 · connected to 2kW nower supply rack−1	3-10
					H6∼H10 : connected to 3kW power supply rack	
					H11~H15: 2kW powersupply nack-2 (powersupplies No.3	4 are not avail
					H12: for facility supporting bench heater	
J	EP	100V/3A	J1~J6	30	J1∼J5: connected to 60W power supply J6 is wired from inside chamber ∼ external input terminal b	3-11

to be prepared by users

m application purpose	spec	ificatio	n gty o	Min.	qty of shells per 1 flang	hozzle	allocatio	notes			er-vessel permane	nt terminal board			vacuum vessel fee	ed-through terminal		pre	paration room exte	emal input terminal	board	note
application purpose	ume	ntvo Itaa	circuit	aty d		e size	sign	notes	dust cap	plug	receptacle	junction shell	cable clamp	cable clamp	plug	plug	cable clamp	cable clamp	junction shell	1 .	plug	terminal #
TS signals (5A)	5/	DC 100V	500	1000	10: ×20 conductors	300A×5	N-6 1~5	#16×10;co	nducto r ®0	100	160	100	100	M\$3057-10A 100	100	100	100	100	100	100	M\$3106B18-1S	A1~A100
connector maker	-	-	-	-	-	-	-	-	Japan Aviation Electronics Industry Limited	Limited	Japan Aviation Electronics Industry Limited	Limited	Limite d	Japan Aviation NElectronics Industry Limited	Limited	Japan Aviation y Electronics Industr <u>Limited</u>	Limited	l imite d	Japan Aviation JElectronics Industry Limited	Limited	limited.	× -
#SEP (10A)	10/	DC 100V	40	(88)	8 ×1) conductors	300A×1	N-9	#12×8 con		11	11	11	11	MS3057-12A 11	11		11	11	11		11	B1~B11
connector maker	-	-	-	-	-	-	-	-	Limited	Japan Aviation Electronics Industry Limited	Limited	Japan Aviation Electronics Indust Limited	Japan Aviation ry Electronics Indust Limited								Japan Aviation y Electronics Industr Limited	
TS thermocouple	c.	с.	500	1000	24. K14 conductors	300AX3	N-4 1~3	#16×24 co	660-009N1656-04 nductor62	121 AFD55-15-255N-043 42	A7D50-16-26PN-1A 42i	-	94003-16-3014	Limited MS 3 0 5 7 - 1 6 A 4 2	14	•z	42	84 142 7	4 21	40	16	C1~C42
connector maker		-	-	-	-	-	-	-	Japan Deutsches co			. –	ļ .	Japan Aviation Electronics Industry Limited	Ltd	Hitach i Power Semicon ductor Devic Ltd.	Limited	Limited	Limited	Ltd	Hitach i Power Semicon ductor Devio Ltd	
calorimeter (60 ch) spare thermocouple (20 ch)	C.	C.	60 20	120 40 (158)	24:×5 24:×2 [24:×7	300A×1	N-4 4	#15×24 co	660-009N1686-04 nductor#1	(#21 AFDSS-15-285N-043 7!	APDSO-16-26PN-1A 71	-	94003-16-3014 7	MS3057-15A 7	7	Ţ.	7	14 (?)	7.	7	JADID6B24-/28SC 7	D1~D5 N1.N2
connector maker		-	-	-	-	-	-	-		Japan Deutsches co			Japan Deutsches o	Japan Aviation Electronics Industry Limited	Hitach i Power Semicon duc tor Devic Ltd	l td	Limited	L imite d	Japan Aviation y Electronics Industry Limited	l td	HitachiPower sŞemicon ductorDevi Ltd.	1.1
TS temperature measureme (thermistor, platinum sensor	nt 1 A	DC 100V	301	(130)	10 K13 conductors	300A×1	N-43	#16×10ico	nductods3	13	131	13	131	MS3057-10A 13	13	13	13	26 (13	13	13	13	E1~E13
connector maker	-	-	-	-	-	1	-	-	Japan Aviation Electronics Industry Limited	Japan Aviation Electronics Industry Limited	 Japan Aviation Electronics Industry Limited 	Japan Aviation Electronics Indust, Limited	Japan Aviation Electronics Indust Limited	Japan Aviation Electronics Industry Limited	Limited	Limited	. Limited	Limited	Japan Aviation Electronics Industry Limited	Japan Aviation Electronics Industr Limited	Japan Aviation y Electronics Industr Limited	+ -
shroud temperature measur	emGre	t C.	301	(? 2)	24 K 3 conductors	300AX1	N-38	#16×24 co	nductors	-	-	-	-	MS 30 57 - 16A	JA3105B24-J2850 3 Hitachi Power	JA3106824-J2880 3 Hitachi Power	3		-	-	-	F1~F3
connector maker		-	-	2.0	-	-	-	-	-	-	-	-	-	Electronics Industry Limited	Semicon duc tor Devic Ltd	Semicon ductor Devic		-	-	-	-	-
SBG temperature measurem [※1] TQCM	en t /	DC 100V	5 12	4.9	10: ×3 10: ×8 10: ×11	300AX1	N-39	#16×10cc	nductorê	3	3	3	3	MS3057-104		11	11	-	-	-	-	G1~G3 P1~P8
connector maker	-	-	-	-	-		-	-	Limited	Japan Aviation Electronics Industry Limited	Limited	Limited	Limited	Japan Aviation Electronics Industry Limited	Limited	Japan Aviation y, Electronics Industr Limited	Limited	-	-		-	-
IR power supply (100V 30A) TS grounding	304	DC 100V	25- [21	(64)	4 ×15 4 ×1 (4) ×1 (4)	, 300AX 2	N-5 1, 2	#4×4cond		M83106B32-178 16	161	16	16 Japan Aviation	MS 3 0 5 7 - 2 0 A	NS3195832-175 16	16 16	16	32 (16)		16	16	Q1
connector maker	-	-	-	-	-	-	-	-	Electronics Industry	DDK Ltd	DDK. Ltd.	Electronics Indust	ny, Electronics Industr	Electronics Industry	DDK Ltd.	DDK Ltd.		Electronics Industry	Electronics Industry		DDK Ltd	-
IR power supply (100V 3A)	3/	DC 100V	251	50 (60)	10 ×6 conductors	300A×1	N-5 3	#16×10 _{co}	MS25043~18D nductor®	MS3E06B18-1S 6: Japan Aviation	MS31U2A18-1P 6'	6 Janan Aviation	MS3057-10A 6-	MS 3057 - 10A 6	MS3106818-18 6	6- 6-	MS3057-10A 6	MS 30 57-10A 12 (6)	6	MS3102A18-1P	4anan Aviation	J1~J6
connector maker	-	-	-		-	-	-	-		Electronics Industry			Limite d	Limited	SMA	SMA	Electronics Industry Limited		y Electronics Industry		y, Electronics Industr Limited	- *
RF coaxial (SMA)	s	MA	20	20	1 20	300A×1	N-7	-	-	-		-	-	-	20 20	20		-	-	-	-	K1~K20
connector maker		- Tec	-		: . T.		– N-33				-			-	REPIC corporation	Huber + Suhner/ REPIC corporation	-	-	-	-		-
permanently-equipped lighti	101	100V	2	. 4	4 × 1 conductors	10710×2		#16×4.com	ductors	-	-	-	-	MS3057-6A 2 Japan Aviation	Japan Aviation	MS3106BL45-2S 2: Japan Aviation	MS 3 0 5 7 - 6 A 2 Japan Aviation		-		-	L1. L2
connector maker	-	-	-	-	-	-	-	-	-	-	-	-	-	Limited MS 3 0 5 7 - 6 A	Electronics Industr	ry Electronics Industr Limited	Electronics Industry Limited		-	-	-	-
all system emergency abort	sw.	1	1	2 (4)	4 ×1	ICPTOXI	N-37	#16×4 co	ductors Th	NS3106B14S-2S 1 Japan Aviation	Japan Aviation	Japan Aviation	Japan Aviation	MS3057-BA Japan Aviation	Japan Aviation	Japan Aviation	Japan Aviation	-	-	-	. –	M1
connector maker	-	-	-	-	<u>i -</u>	-	-	-		Electronics Industry Limited	Electronics Industr Limited	Electronics Indust Limited		Limited	Electronics Industr	Limited	Electronics Industry Limited		-	-	- JA3106824-J2850	
TS thermocouple relay	C. C.		-	120	24 ×5 conductors	-	-	; #16×24≵o	hductors	-		·	-	-	-	-	-	10 10	5	Hitachi Power	5 JA3106824-J2850 5 Hitachi Power	· <u> </u>
connector maker	-	-	-	-	i -	-	-	-	-		-			-	-	-	-	Electronics Industry Limited	Japan Aviation yElectronics Industry Limited	Semiconductor Devic	Hitachi Power Semicon ductor Devi Ltd	ce
		4_	<u> </u>									1		· · · · · ·	÷		ļ	İ				
															i İ	1						

 Table 3-2 Table of Feed-through Terminals for Current/Thermocouples (1/2) (Simplified)

Table 3-2 Table of Feed-through Terminals for Current/Thermocouples (2/2) (Detailed)

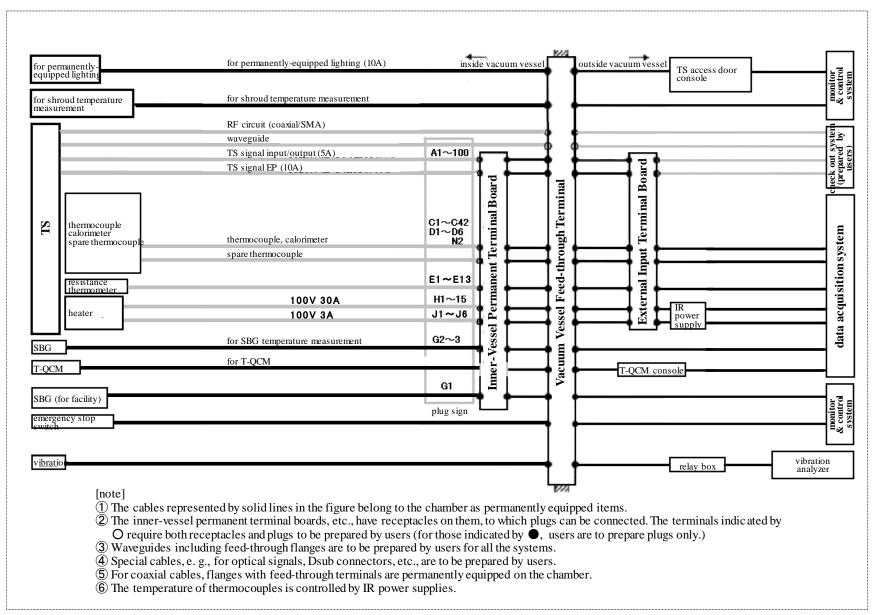


Figure 3-4 WBD Diagram of Feed-through Terminal

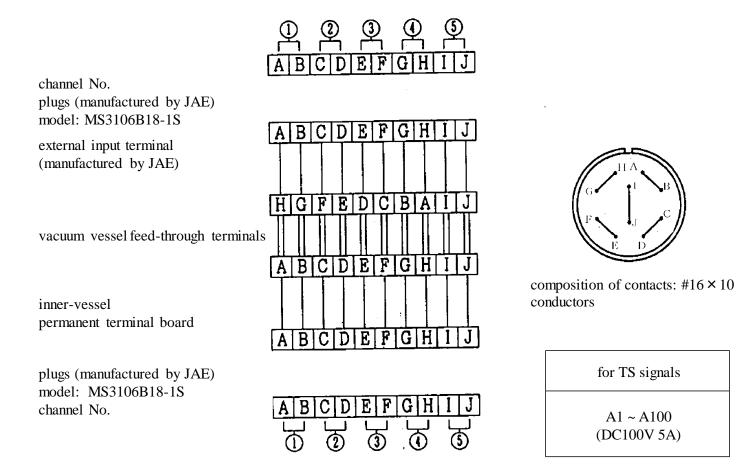


Figure 3-5 WBD Diagram of Signal Lines for TS

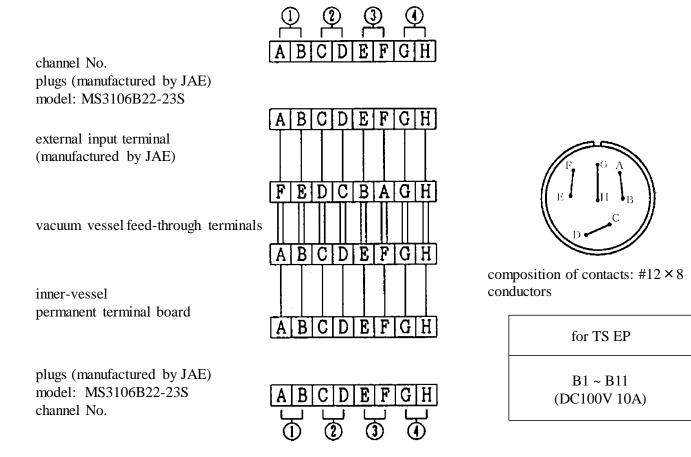


Figure 3-6 WBD Diagram of EP Lines for TS

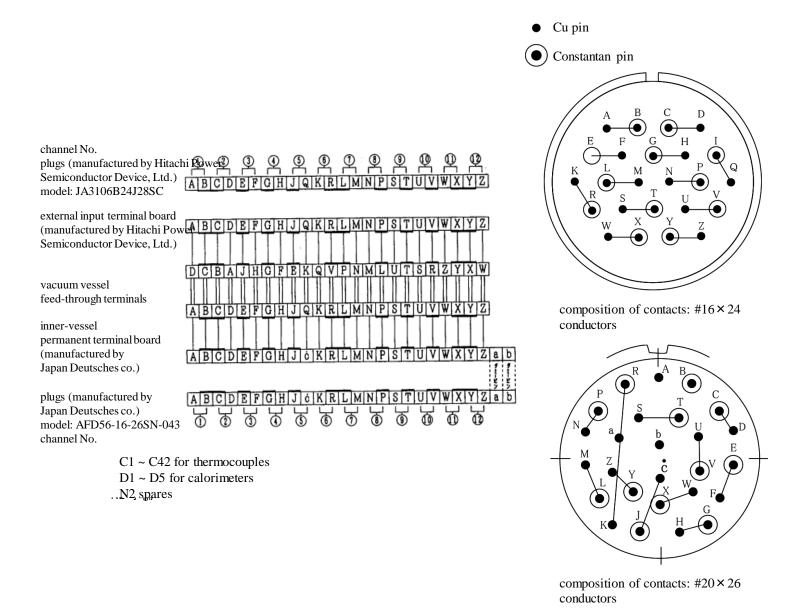


Figure 3-7 WBD Diagram of Thermocouples/Calorimeters for TS, and Thermocouple Spare Lines

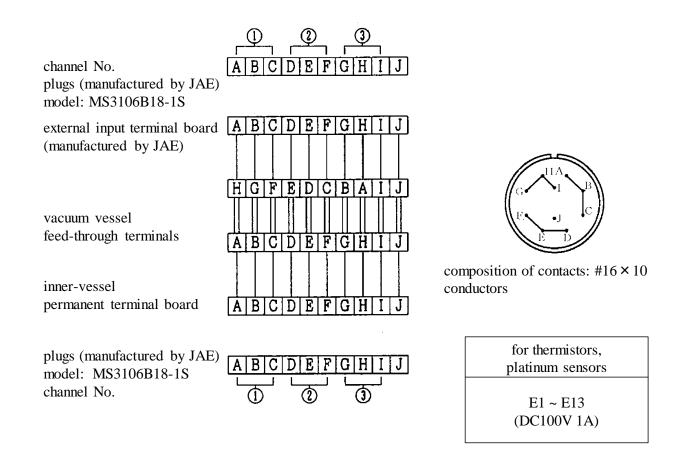


Figure 3-8 WBD Diagram of Temperature Sensors for TS

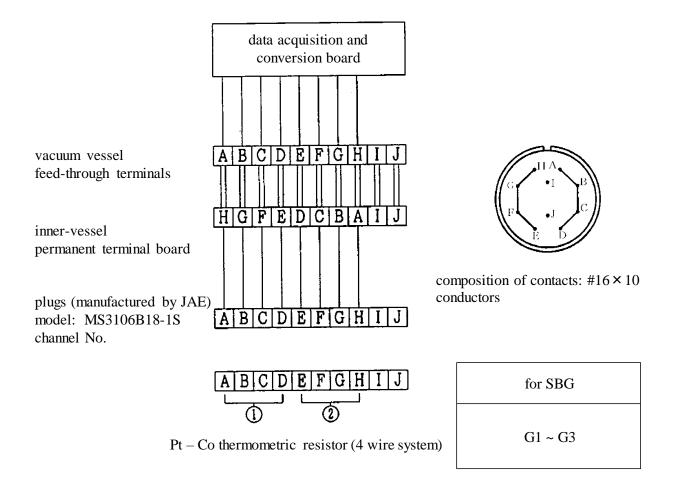


Figure 3-9 WBD Diagram of SBG Temperature Measurement

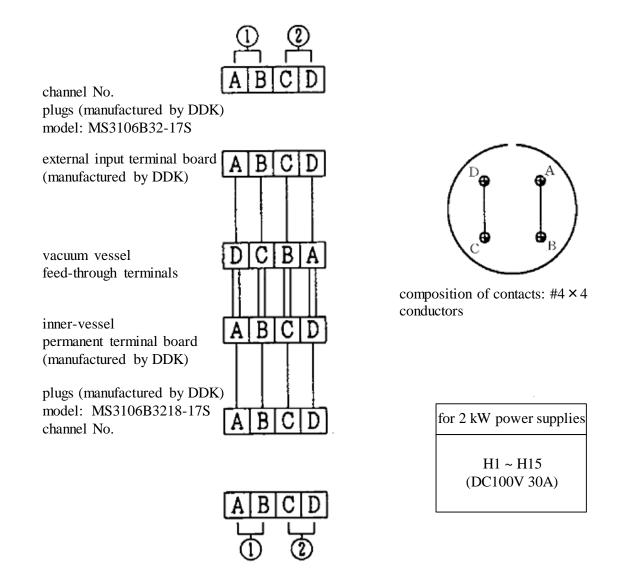


Figure 3-10 WBD Diagram of 2 kW IR Power Supply Rack

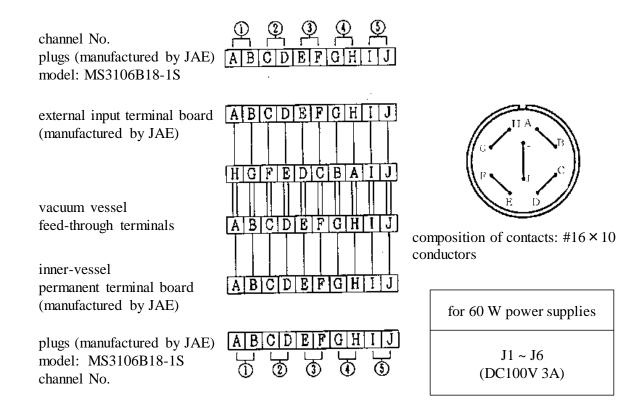


Figure 3-11 WBD Diagram of 60W IR Power Supply Rack

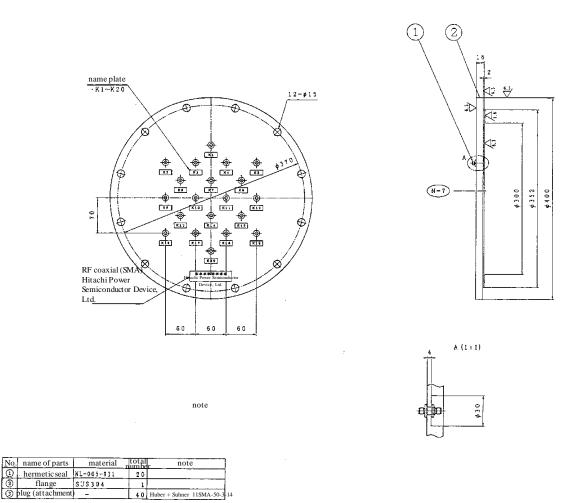


Figure 3-12 Feed-through Terminal for Coaxial Cables of TS

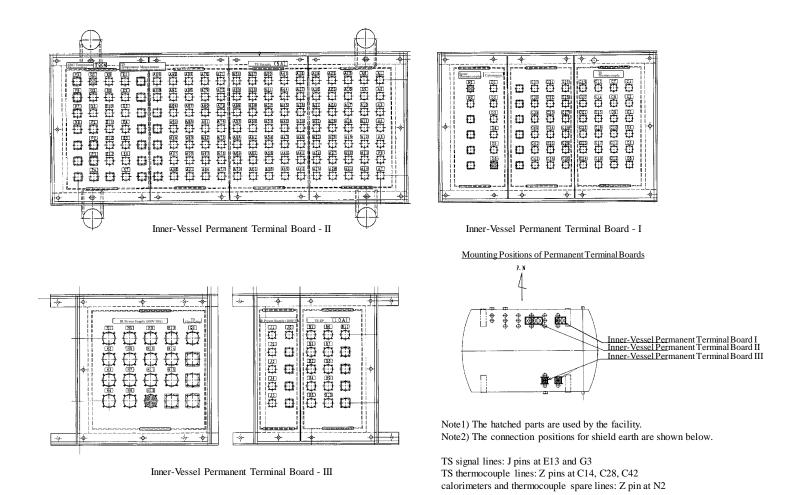


Figure 3-13 Inner-vessel Permanent Terminal Boards – I, II, III

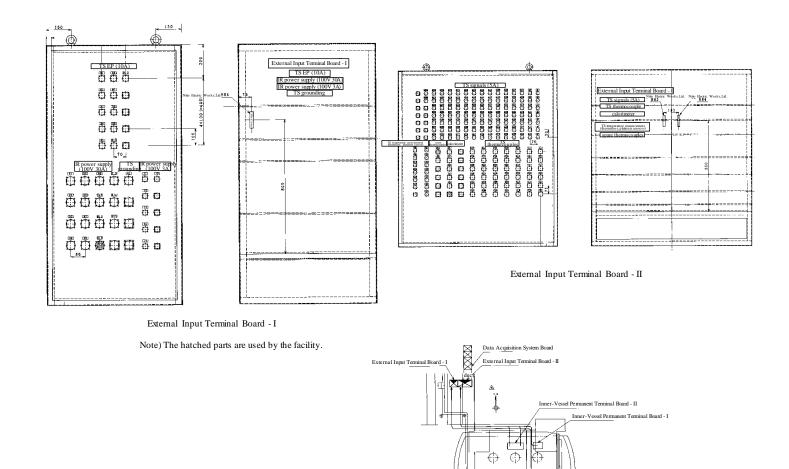


Figure 3-14 External Input Terminal Boards – I, II

œ

Inner-Vessel Permanent Terminal Board - III

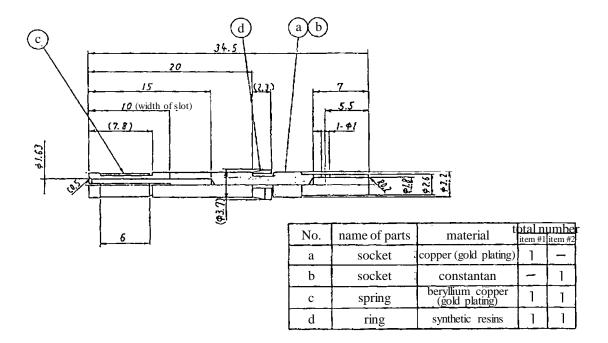


Figure 3-15 Thermocouple Socket Contact (manufactured by Hitachi Power Semiconductor Device, Ltd.)

3.3.1.3. Details of Hard Ports

There are hard ports as shown in Table 3-3 inside the vacuum vessel. Refer to Figure 3-16 for the hard ports $(1) \sim (3)$ in the Table.

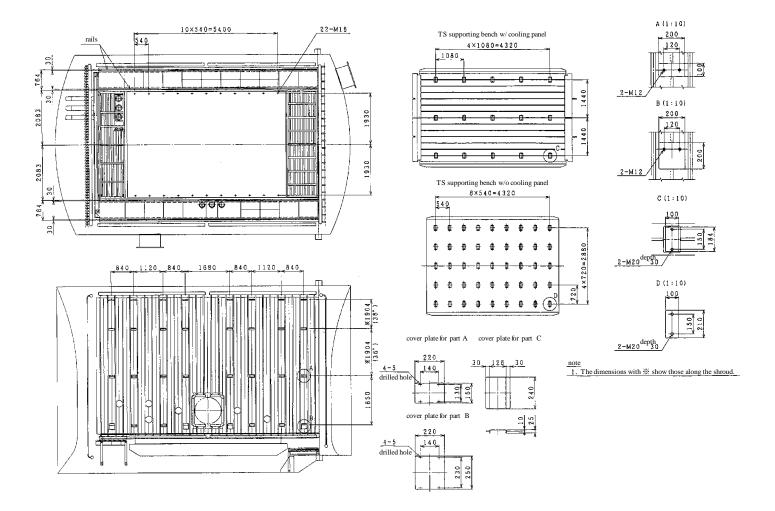
No.	location	qty	bolt size*1	usage, etc.
(1)	TS supporting bench	45	M20	helisert insert attached
(2)	supporting bench with cooling panel	15	M20	helisert insert attached
(3)	body shroud	64	M12	
(4)	upper part of vacuum vessel	2		support for SBG
(5)	upper part of vacuum vessel			for optical bench maintenance ^{*2}
(6)	on optical bench	11	M16	guide for carrying in supporting bench ^{*3}
(7)	on work floor			*4

Table 3-3 Table of Hard Ports

*1 Bolts are to be prepared by users.

- *2 Even though "optical bench maintenance" is shown here as the nominal usage, the usage is not restricted and is at users' choice.
- *3 While these screw holes are used for mounting the guide for carrying in a TS supporting bench, they can be used as hard ports otherwise.
- *4 By arranging attachment jigs, the rails on the work floor can be used.

The load capacities of the hard ports are shown below.


(1) TS supporting benches with and without cooling panel

Refer to Table 3-4 and Figure 3-17.

No.	sign	name	load capacity*2		
(1)	Fc	compressive load	37262.80 N		
			(for vertical load)		
(2)	Ft	tensile load	43146.4 kg		
			(for vertical load)		
(3)	Fx	X-direction load in horizontal plane	23534.4 N ^{*1}		
(4)	Fy	Y-direction load in horizontal plane	23534.4 N ^{*1}		
(5)	Mx	X-direction moment	1618 N•m		
(6)	Му	Y-direction moment	98.06 N•m		

Table 3-4 Load Capacities of Hard Ports

- *1 It denotes the load capacity for shearing, but does not guarantee the prevention of lateral slippage.
- *2 It denotes the load capacity for the TS supporting benches with and without a cooling panel, obtained based on safety factor f = 3.

Figure 3-16 Configuration of Hard Ports

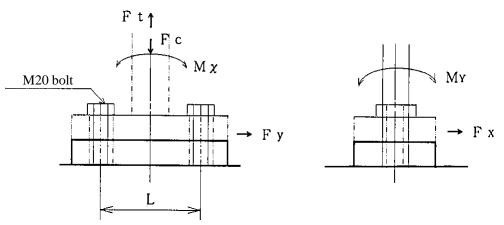


Figure 3-17 Load Capacity of Supporting Benches with and without Cooling Panel

(2) Body shroud

Refer to Table 3-5 and Figure 3-18.

No.	sign	name	load capacity					
(1)	Ft	tensile load	588.36N (for vertical load; the total weight per one shroud is to be under 600 kg.)					
(2)	Ea	shearing	294.18N (in the perpendicular direction to the axis; the total weight per one shroud					
(2)	Fs load		is to be under 600 kg.)					
(3)	М	moment	ment 7.85 N • m (no more than 8 hard points are to be used per one shroud.)					

Figure 3-18 Load Capacity of Body Shroud Hard Port

(3) Upper part of vacuum vessel (support for SBG) … Refer to Figure 3-30 and section 3.3.2.1.

200 kg/ hard port (for vertical load)

(4) Upper part of vacuum vessel (for optical bench maintenance)

Even though these hard ports are for "optical bench maintenance", the usage is not restricted and is at users' choice as long as the method below is followed.

These hard ports are attached to the upper side of the vacuum vessel and cannot be used as they are. As shown in Figure 3-19, they require a rod to be inserted whose user-side mounting section is extended into the shroud, and users are to place a necessary mounting seat at the end of it.

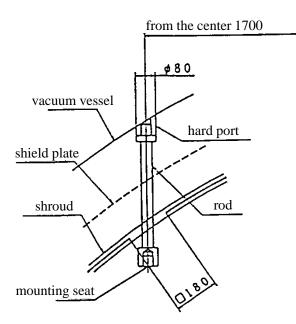


Figure 3-19 Schematic View of Hard Port for Optical Bench Maintenance

Pay attention to the following matters when inserting a rod.

- (a) Load capacity of hard port: 4,500 kg (for vertical load)
- (b) Opening dimensions of the shroud: 180×180

That is, the maximum dimensions of the rod are to be manufactured the way they do not exceed the limit of enabling it to go through the feed-through hole. Furthermore, there may be manufacture errors between the vacuum vessel and the shroud, and therefore a rod is to be manufactured with its shroud-feed-through part in as minimized dimensions as possible.

- (c) Rod configuration: Be sure to place a mounting seat at the end of a rod to prevent seizure at the thread part when bending load acts on the rod; that way, the thread part can be protected from the direct impact of bending load.
- (d) Prevention of seizure: The hard ports being SUS 304 products, a rod made of stainless steel requires caution not to cause seizure at the thread parts. When using a seizure-preventing agent, make sure to choose one that does not have bad influence on a TS or the vacuum vessel with its outgas, etc.
- (5) On optical bench

Refer to Table 3-6.

No.	sign	gn name load capacity			
(1)	Ft	tensile load	13728.4N (vertical direction)		
(2)	М	moment	23.53 N • m		

Table 3-6 Load Capacity of Hard Ports on Optical Bench

(6) Notes

As mentioned in section 2.2.6, the chamber foundations are isolated from the seismic slab which has an optical bench mounted upon it. When performing an optical property confirmation test that takes account of micro vibration, make sure to prevent the vibration from the vacuum vessel not to be transmitted via hard ports. (ex. by tying the tie-wrap that fixes a TS to the body shroud.)

3.3.1.4. Thermal I/F on TS Supporting Bench

(1) Supporting bench without cooling panel

The TS supporting bench without a cooling panel cannot be cooled because it is not equipped with an LN_2 circulating structure. Meanwhile, the bench has heaters attached to it, which heat the bench during a test. In other words, it is the balance between cooling by radiation cooling and heating with the heaters that determines the temperature of the bench. Keep that point in mind when using the TS supporting bench without a cooling panel.

(2) Supporting bench with cooling panel

The TS supporting bench with a cooling panel can be deliberately cooled with its attached panel through which LN_2 circulates. The hard ports where a TS or a jig is mounted are thermally insulated from the parts where LN_2 runs through. That is, the hard ports are cooled only by radiation cooling. Meanwhile, the bench is heated by a heater as with the supporting bench without a cooling panel. Therefore, enough level of heat insulation is necessary when mounting a TS or a jig.

3.3.1.5. TS Cooling/Heating I/F

(1) General description

When a jig is manufactured for controlling temperature from the TS side, there are flanges available in the vacuum vessel that supply LN_2 and GN_2 for partially cooling and heating a TS, respectively. Refer to Figure 3-20 regarding to ports for TSs. Some of those flanges are for cooling the work floor and others are dedicated for a supporting bench with a cooling panel (cf. Table 3-7.)

No.	line No.	location	application purpose
(1)	LN-3145-20-3HV	body	cooling work floor / TS
(2)	LN-3146-20-3HV	head	cooling work floor
(3)	LN-3147-20-3HV	head	cooling TS
(4)	LN-3148-20-3HV	body	cooling TS
(5)	LN-3149-20-3HV	body	cooling TS

Table 3-7 List of TS LN₂ Lines

LN ₂ line for partial cooling of TS	GN ₂ line for partial heating of TS
\cdot 20A \times 5 lines	• 150A \times 3 lines
• N-32 nozzle (cf. Figure 3-20)	• N-24 nozzle (Figure 3-20)
CASE.1 shroud on supporting bench lower plane being not used (4 lines are available for	supply temperature: normal temperature
the TS side)	~ 60°C
head (2 lines): for work floor – 1 line	supply pressure: 0.098 ~ 0.148 MPa
for TS -1 line	
body (3 lines): for TS -3 lines	
CASE.2 shroud on supporting bench lower plane being cooled (3 lines are available for	
test t item side)	
head (2 lines): for work floor / shroud on lower plane of supporting bench – 1 line	
for TS – 1 line	
body (3 lines): for work floor / shroud on lower plane of supporting bench -1 line	
for TS – 2 lines	

Table 3-8 General Description of TS Cooling/Heating I/F

- (2) Feed rate of LN_2 and GN_2
 - (a) The supply conditions of the LN_2 supply line are shown in Table 3-9 below.

Table 3-9 Rough Levels of LN_2 Feed Rate and Valve Opening Percentage

feed rate (Nm ³ /h)	50	60	70
valve opening percentage (%)	24	27	31

The gasification rate is 35%, and the supply pressure is about $0.098 \sim 0.148$ MPa.

- (b) As for the GN₂ supply line, the feed rate is 30 Nm³/h and the supply pressure is about 0.098 ~ 0.158 MPa for the valve opening percentage of 46%.
- $(3) \quad LN_2 \ supply \ ports$

The LN₂ supply ports are connected via Grayloc Connectors (cf. Figure 3-21, tightening torque 260 kg·cm.) Users are to pay attention to the following matters when laying pipes via the Grayloc Connectors

by themselves. (The same cautions are required when laying SBG systems explained in section 3.3.2.1.)

- (a) The hubs and seal rings shown in Figure 3-21 are to be prepared by users.
- (b) Since it normally takes 3 months to have the hubs of Grayloc Connectors procured (seal rings also take long for procurement), users are to confirm with the manufacturer (NIKKISO CO., LTD.) for the procurement lead time when they plan the manufacturing process for laying pipes.

(4) GN₂ supply ports for heating TS

There are three GN_2 supply ports for heating a TS in this facility with their inlets at the chamber head and outlets on the body (cf. Figure 3-20.) The ports have a 150A special VG flange that adopts a metal tubal O ring. Therefore, users are to pay attention to the following matters when laying pipes by themselves.

- (a) The metal tubal O rings (cf. Figure 3-20) and connection pipes are to be prepared by users.
- (b) Since it normally takes one month to have metal tubal O rings delivered, it is recommended that they be ready beforehand. Also, refer to Figure 3-22 which depicts how the flanges of GN₂ nozzles are manufactured, when planning for laying pipes.

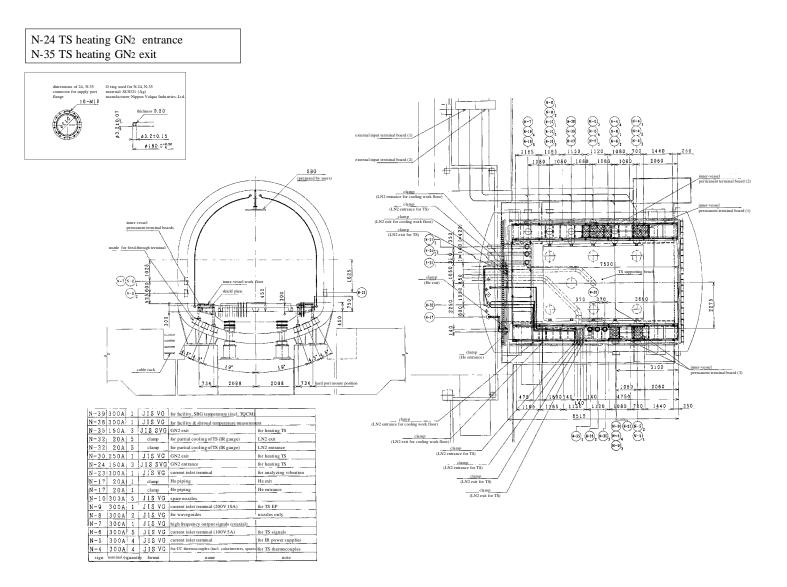
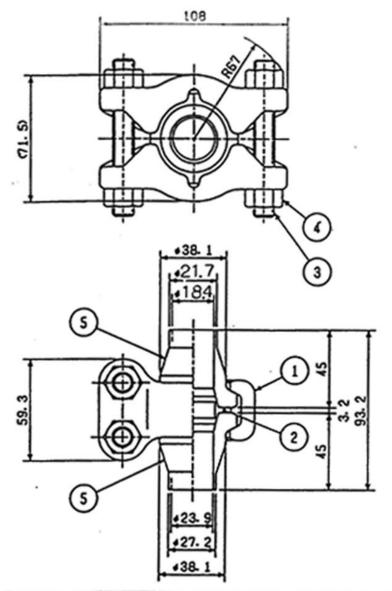
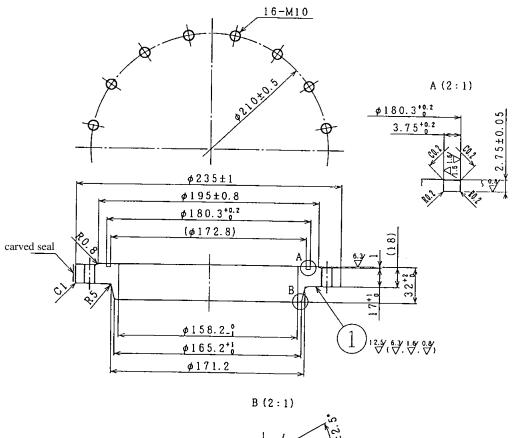




Figure 3-20 System Diagram of Ports for TS

6						
s	welded hub	SUSF304	18 sets	1GR8 (GL-32-4815)		
4	nut	SA194-6r8	36 sets	H12×1.75		
3	bolt	SA193-88	18 sets	M12x1.75xL89		
- 2	seal ring	17-4PH 77-24	18	NO. 8		
1	clamp	SA182-F304	18 sets	1GR 8		
item	name	material	quant	description		

Figure 3-21 Diagram of Grayloc Connector for LN₂

1.5<u></u>, s

Figure 3-22 Diagram of Supply Port Flange for GN₂

3.3.1.6. I/F on TS Installation Device

A typical procedure of carrying in a TS into the vacuum vessel is shown in Figure 3-23. The operation of the installation device is basically executed by the facility side.

The assemble work for a TS is performed on the TS installation dolly.

The maximum load capacities on the moving dolly and the TS installation dolly are presented in section 2.2.2. Their load capacities vary when the CG of a loaded item deviates from their centers. Therefore, the CG of a loaded item is to be aligned as close as possible to the center of the TS installation dolly. In case the total weight of a TS and a jig exceeds 2,000 kg while their CGs deviate from the center of the TS installation dolly, contact the facility operation company in advance.

3.3.1.7. Optical Window and Alignment Window

There are three sets of optical window mounting flanges and nineteen sets of alignment windows installed in the vacuum vessel. For their mounting I/F positions, refer to Figure 3-3.

(1) Optical window flange

The structure of an optical window flange is shown in Figure 3-24. Users are to prepare optical glass and flanges referring to this Figure when using the optical window. The surface roughness on the contact face to the facility-side flange is to be 50 μ m or less. An optical window flange has an adjustment mechanism which allows the controlling of the slant that can be up to 5.067 \times 10⁻⁴ rad after vacuuming in the vacuum vessel down to 1 minute (2.9 \times 10⁻⁴ rad.) The facility possesses an optical window and mounting flanges that used to be applied in the old radiometer space chamber. Their specifications and drawings are shown in Figure 3-25.

(2) Alignment window

There are alignment windows for the purpose of alignment measurement on a TS. Besides the permanently-equipped alignment window glass which is made of tempered glass, there are eight (4 concentric-type and another 4 eccentric-type) alignment windows (φ 96) made of glass (BK7) with a highly-accurate transmission wave front, which can replace the permanently-equipped alignment window prior to the execution of a test to satisfy test requirements. Moreover, a theodolite and an ITV device (portable) shown in section 2.2.8 can be set on the alignment window.

When removing the tempered glass from the alignment window, lay air packing, etc., by way of caution to prevent damage on the tempered glass in case it is dropped.

The heights from the TS supporting bench to the optical window and to the center of the alignment window are shown in Figure 3-26.

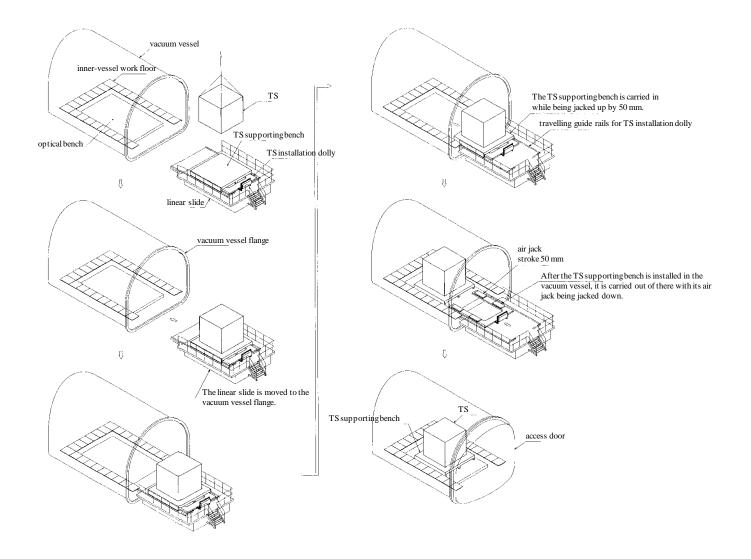


Figure 3-23 Procedure of TS Installation

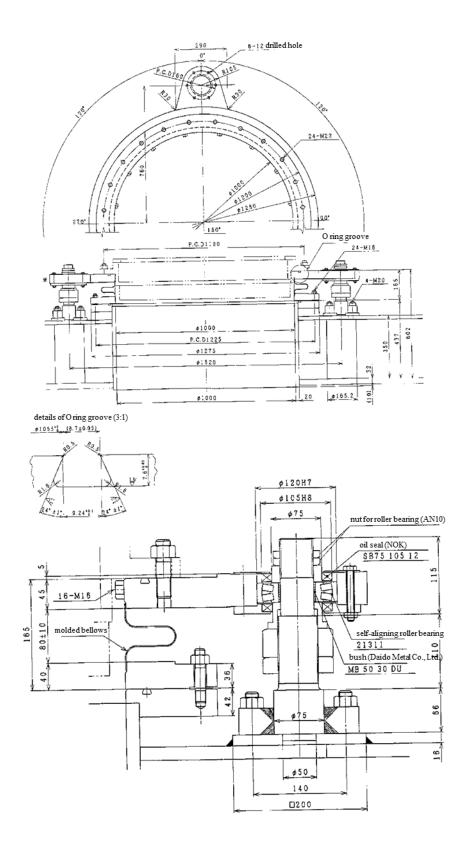


Figure 3-24 Diagram of Optical Window Mounting Flange

note) 1. The accuracy of the transmission wave front on the $\phi 50$ in the effective diameter $\phi 96$ is within 0.1 µm. 2. The uniformity of material is $\Delta n = 5 \times 10^{-6}$ or less.

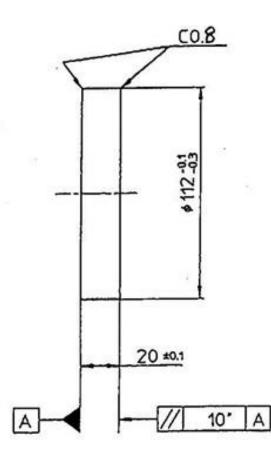


Figure 3-25 Optical Window

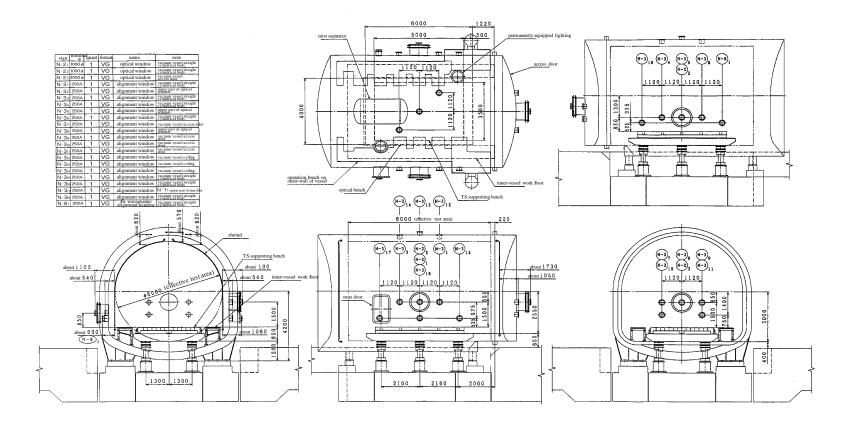


Figure 3-26 Mounting Positions of Optical Windows

3.3.1.8. Others (Inner-Vessel Work Floor, Movable Operation Bench, Working Platform)

(1) Work floors inside vacuum vessel (cf. Figure 3-27)

The work floors inside the vessel are used for the work to be performed on them after carrying in a TS into the vacuum vessel. The load capacity of the work floor is 150 kg / piece.

(2) Movable operation bench (cf. Figure 3-28)

There is a movable operation bench for accessing the man door and the optical window. It is available to users when necessary.

(3) Working platform (cf. Figure 3-29)

There is a working platform for mounting an SBG or accessing the upper part of a TS in the vacuum vessel. The maximum load mass and usable dimensions are shown below. The assembly and operation of the platform are to be executed by users.

- (a) Max. load mass
 - ① Working platform floor 150 kg
 - ② Working platform flip-up floor 100 kg
 - ③ Working platform ladder 100 kg
- (b) Usable dimensions
 - ① Max. usable height 3,505 mm
 - ② Storage height 1,705 mm

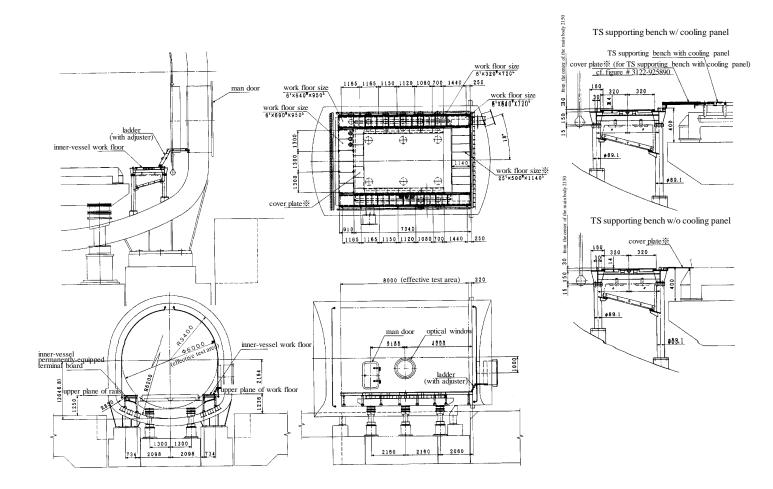


Figure 3-27 Work Floors inside Vacuum Vessel

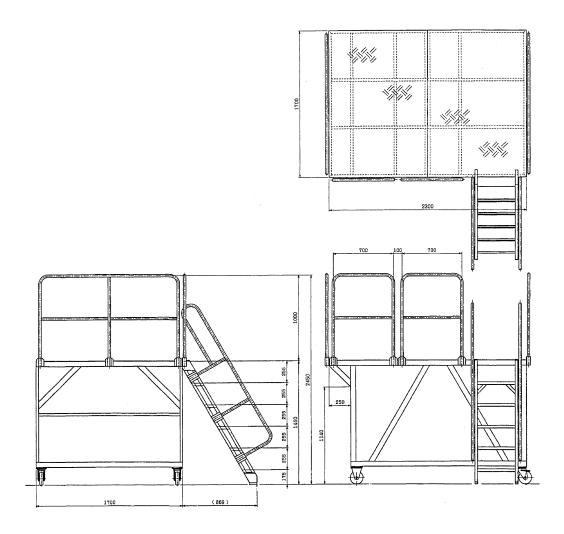


Figure 3-28 Movable Operation Bench

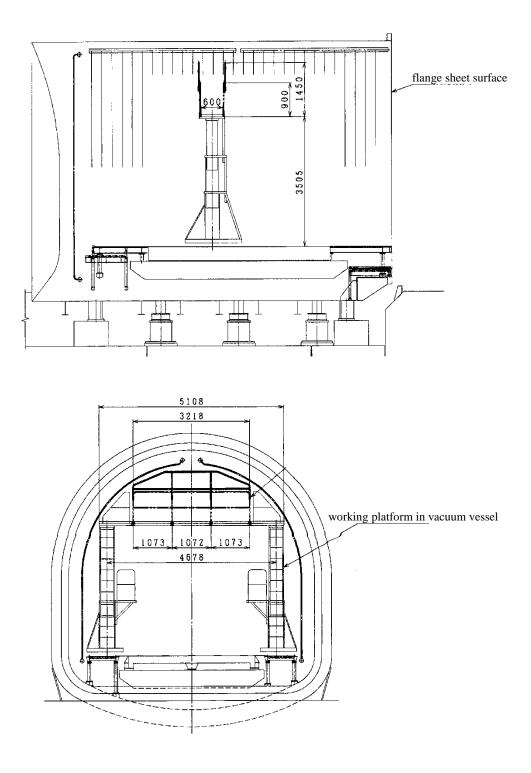
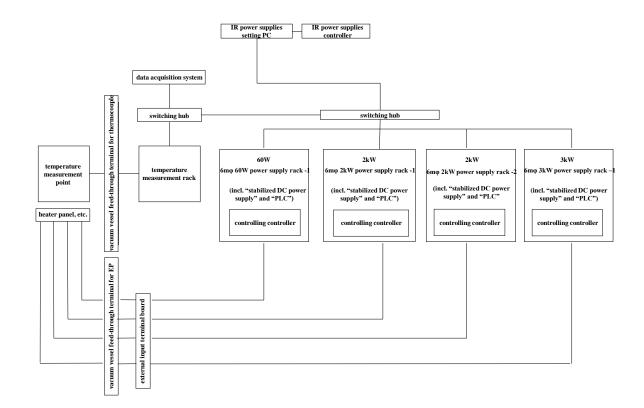
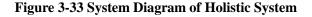


Figure 3-29 Working Platform


3.3.2. Power Supplies for Heat Sources


(1) Composition of components

The composition of primary components in the power supplies for heat sources and a system diagram of the holistic system are shown in Table 3-11 and Figure 3-33, respectively. Also, an inter-connection diagram of power supply racks is shown in Figure 3-34.

Table 3-11 Composition of Primary Components in Power Supplies for Heat Sources

name of component	model #, etc.	qty	note
(1) controller	HF-W7500 / model 30LX	1	
(2) setting PC	Endeavor Pro7500	1	
(3) power supplies for heat			qty of power supplies:
sources			
(a) 6mo 60W power supply rack -1	by AES/ Matsusada Precision Inc.	1 set	25
(b)6mq 2 kW power supply rack -1	by AES/ Matsusada Precision Inc.	1 set	10
(c) 6mo 2 kW power supply rack -2	by AES/ Matsusada Precision Inc.	1 set	10
(d)6mø 3 kW power supply rack -1	by AES/ Matsusada Precision Inc.	1 set	10

			[1	[1			2 kW power supply rack- 1	
	H1	H1				H1	H1]	power supply 1, 2	
	H2	H2				H2	H2]	power supply 3, 4	
	H3	H3				Н3	H3]	power supply 5, 6	
	H4	H4				H4	H4]	power supply 7, 8	
	H5	H5			<u> </u>	H5	H5]	power supply 9, 10	3 kW power supply rack - 1
	H6	H6	(power supply 100 V 30A)		(power supply 100 V 30A)	H6	H6]		power supply 1, 2
	H7	H7	100 V		100 V	H7	H7]		power supply 3, 4
	H8	H8	pply		pply	H8	H8]		power supply 5, 6
	H9	H9	ver su		ver su	H9	H9]		power supply 7, 8
	H10	H10	(pov		voq)	H10	H10]	2 kW power supply rack - 2	power supply 9, 10
	H11	H11				H11	H11]	power supply fack 2 power supply 1, 2	
used	by facility	H12				H-12	used by fa	cility	power supply 3, 4	
	H13	H13				H13	H13]	power supply 5, 6	
	H14	H14				H14	H14]	power supply 7, 8	
	H15	H15				H15	H15]	power supply 9, 10	
				J	L	_				
]		1			60 W power supply rack	
	J1	J1	(3A)		(3A)	J1	J1]		
	J2	J2	100 V		100 V	J2	J2]	-	
	J3	J3	(power supply 100 V 3A)		(power supply 100 V 3A)	J3	J3]	-	
	J4	J4	/er su		/er su	J4	J4	}	-	
	J5	J5	mod)		mod)	J5	J5]	-	
			L	J		J				

Figure 3-34 System Diagram of Power Supply Racks for IR Heaters

3.3.3. Control Mode

3.3.3.1. Control System

(1) Control system of this power supply rack

The control system of power supply racks is shown in the following Table 3-12.

			1			
			based on temperature at one point			
			based on averaged temperature			
			among multiple points			
		PID control (=temperature control)	based on temperature difference at			
	temperature control in broad definition		one point			
			based on averaged temperature			
control			difference among multiple points			
		ON/OFF control				
	constant power control	with load resistance value input				
		without load resistance value input				
	manual voltage output control					
	local control					

Table 3-12 Control System of Power Supply Rack

(2) Grouping of multiple power supplies

Power supplies can be grouped for simultaneous operation. The grouping is possible only for the power supplies on the same rack. The grouping of power supplies for simultaneous controlling can only be applied to PID control and ON/OFF control.

3.3.3.2. Temperature Control

PID control denotes the controlling of temperature by using the PID commands sent from a PLC. The control methods and descriptions of PID control are shown in Table 3-13 below:

control	number of controlled channels	_	et point(s) of erature control	brief description of controlling
based on temperature at one point	1 temperature channel	_		The temperature of 1 temperature channel is controlled to be as designated.
based on averaged temperature among multiple points	Max of 10 temperature channels	_		The average temperature of multiple temperature channels is controlled to be as designated.
		1 temperature channel		The temperature of 1 temperature channel is controlled to be at a constant difference from the temperature of a reference control temperature channel.
based on temperature difference at	1 temperature channel	1 power supply	control power supply based on temperature at one point control power supply based on averaged temperature	The temperature of 1 temperature channel is controlled to be at a constant difference from the temperature of a temperature channel of the reference control power supply. The temperature of 1 temperature channel is controlled to be at a constant difference from the average temperature of multiple temperature
one point		power	among multiple points control based on temperature at one point	channels of the reference control power supply. The temperature of 1 temperature channel is controlled to be at a constant difference from the temperature of a temperature channel designated by the reference control power supply group.
		supply group	control based on averaged temperature among multiple points	The temperature of 1 temperature channel is controlled to be at a constant difference from the average temperature of multiple temperature channels designated by the reference control power supply group.

Table 3-13 Control Methods and Descriptions of PID Control (1/2)

control	number of controlled channels	-	et point(s) of erature control	brief description of controlling
		1 temperature channel		The average temperature of multiple temperature channels is controlled to be at a constant difference from the temperature of a reference control temperature channel.
		1 power supply	control power supply based on temperature at one point	The average temperature of multiple temperature channels is controlled to be at a constant difference from the temperature of a temperature channel of the reference control power supply.
based on averaged temperature difference among	Max of 10 temperature channels		control power supply based on averaged temperature among multiple points	The average temperature of multiple temperature channels is controlled to be at a constant difference from the average temperature of multiple temperature channels of the reference control power supply.
multiple points		power	control based on temperature at one point	The average temperature of multiple temperature channels is controlled to be at a constant difference from the temperature of a temperature channel designated by the reference control power supply group.
		supply group	control based on averaged temperature among multiple points	The average temperature of multiple temperature channels is controlled to be at a constant difference from the average temperature of multiple temperature channels designated by the reference control power supply group.

Table 3-13 Control Methods and Descriptions of PID Control (2/2)

3.3.3.3. ON/OFF Control

The definition of on/off control is that temperature is controlled with the voltage output of a power supply turned off when the upper temperature limit is exceeded, and turned on when the lower temperature limit is exceeded.

For this control method, the preset ON/OFF control voltage is applied as the output voltage (ON/OFF control voltage \leq voltage load tolerance.) On/off temperature control can only be achieved in controlling based on temperature at one point.

3.3.3.4. Constant Power Control

The constant power control function is based on the control methods as follows. Controlling is executed every 10 seconds.

(1) With input of load resistance value

Constant power control (with load resistance value input) denotes current control which keeps the theoretical current calculated from the specified power and load resistance levels. The basic idea is that a heater generates the specified power when theoretical current is applied to the heater. (Here, the variation of heater load resistance is not taken into account.) Based on the theory, the control current value to generate the target EP at the heater is calculated. Then, the calculated current/voltage values are transmitted to the power supply via LAN.

The EP of measurement data is obtained by the following equation.

EP (P) = $I^2 \times R$ [current × current × resistance]

(2) Without input of load resistance value

For constant power control (without load resistance input), initial current is applied to a circuit to obtain its resistance, from which to derive the current level required to achieve the constant control on the target output power (output voltage \times output current) of a power supply, which is executed via feedback control. The circuit resistance is updated every 10 seconds for correction.

To be precise, the current levels at the forementioned process are varied in stages, during which the output voltage of a power supply is measured. Then the approximate circuit resistance is derived from the output voltage/current of the power supply, using which the output power from the power supply is controlled to achieve the target EP.

That is, a power supply is controlled the way its output EP, which is calculated from the output current/voltage of the power supply, achieves the preset target EP. The power supply is used in a constant current mode to ease the influence of the variation in load resistance. The output current/voltage from a power supply are obtained via LAN, to which then feedback controlling is applied.

3.3.3.5. Manual Voltage Output Control

Via the manual voltage output control function, voltage arbitrarily set by users can be output. To be precise, a power supply can be controlled the way the voltage preset in the "setting PC" or the "controller" can be output.

3.3.3.6. Local Control

When local control is designated for a power supply from the setting screen, the corresponding power supply can be locally operated on its own (by turning its current/voltage output knob.)

The power supplies for local controlling designated by the setting screen can also measure voltage/current output, which is sent to PC and recorded thereat, as in other controlling methods.

Local controlling is also applicable to the 60W power supplies pre-installed in the $6m\phi$ chamber, as one of the controlling types they can deal with.

Local controlling is possible even when the "setting PC" and the "controller" are not in operation (data cannot be recorded in that case.)

3.3.4. Limit Function

The limit function can be classified into the three control operations as follows according to the detected items.

(1) Alert

When the limit that does not require the immediate stop of controlling is chosen to be applied, controlling is sustained while displaying an alert and outputting a PC alarm. It is up to users then whether or not to change control conditions or to take other countermeasures.

(2) Survival mode

When all the target temperature levels to be controlled turn out to be abnormal, temperature controlling is judged as not continuable. When temperature control is stopped, an immediate temperature drop of a TS is avoided by maintaining the heater output only to the ratio [%] preset as the control output for the survival mode case to that at the point of abnormality detection. (The percentage of sustained output is determined based on the output at the point when abnormal temperature output takes place.) Then, an alert shows up on the display while PC/power supply rack alarms go off.

(3) Control abort

Control is stopped when it cannot be sustained due to the abnormality of hardware. Then, an alert shows up on the display, while PC/power supply rack alarms go off and the stop/abnormality lamp turns on.

Tables 3-14 (1/3)(2/3)(3/3) show the items to be detected by the limit function, immediate control reactions, and the control methods in which the corresponding failures are prone to take place. Alerts are output to the setting PC and power supply racks. Table 3-15 shows the actions of alert for individual detected phenomena.

Table 3-14 Table of Limit Functions (1/3)

					PID c	ontrol				
	detected item	content	control reaction	based on temperature at one point	based on averaged temperature among multiple points	based on temperature difference at one point	based on averaged temperature difference among multiple points	ON/OFF control	constant power control	manual voltage output control
(1)	preset temperature	Control temperature exceeded the preset temperature upper limit.	alert	0				0		
(1)	limit	Control temperature exceeded the preset temperature lower limit.	alert	0				0		
(2)	average temperature	Average control temperature exceeded the average temperature upper limit.	alert		0					
(2)	limit	Average control temperature exceeded the average temperature lower limit.	alert		0					
(3)	temperature	Control temperature difference exceeded the preset upper limit.	alert			0				
(3)	difference limit	Control temperature difference exceeded the preset lower limit.	alert			0				
(4)	average temperature	Control temperature difference exceeded the preset upper limit.	alert				0			
(4)	difference limit	Control temperature difference exceeded the preset lower limit.	alert				0			
(5)	temperature overchange	Temperature change of over 10°C in 10 secs was observed in control temperature.	alert	0	0	0	0	0		
(3)	abnormality	Temperature change of over 10°C in 10 secs was observed for 30 secs in control temperature.	survival mode	0	0	0	0	0		

Table 3-14 Table of Limit Functions $(2/3)$	Table 3-14 Table of Limit Functions (2	2/3)
---	--	------

					PID c	ontrol				
detected item		content	control reaction	based on temperature at one point	based on averaged temperature among multiple points	based on temperature difference at one point	based on averaged temperature difference among multiple points	ON/OFF control	constant power control	manual voltage output control
(6)	temperature data abnormality	 About all the target temperatures to be controlled; Temperature data cannot be acquired for 1 minute. Measurement failure due to wire breakage of thermocouple, for example, took place in temperature data. 	survival mode	0	0	0	0	0		
(7)	preset EP upper limit	Control EP exceeded the preset EP upper limit.	alert						0	
(8)	output EP upper	EP load tolerance was exceeded, the excess being 1% or more to less than 5% of Max. power supply output EP.	alert	0	0	0	0	0	0	0
	limit	EP load tolerance was exceeded, the excess being 5% or more of Max. power supply output EP.	control abort	0	0	0	0	0	0	0
	output voltage upper	Voltage load tolerance was exceeded, the excess being 1% or more to less than 5% of Max. power supply output voltage.	alert	0	0	0	0	0	0	0
(9)	limit	Voltage load tolerance was exceeded, the excess being 5% or more of Max. power supply output voltage.	control abort	0	0	0	0	0	0	0
(10)	output current upper	Current load tolerance was exceeded, the excess being 1% or more to less than 5% of Max. power supply output current.	alert	0	0	0	0	0	0	0
(10)	limit	Current load tolerance was exceeded, the excess being 5% or more of Max. power supply output current.	control abort	0	0	0	0	0	0	0

					PID c	ontrol				
	detected item	content	control reaction	based on temperature at one point	based on averaged temperature among multiple points	based on temperature difference at one point	based on averaged temperature difference among multiple points	ON/OFF control	constant power control	manual voltage output control
(11)	power supply abnormality	Abnormal data was received in STS command from power supply.	control abort	0	0	0	0	0	0	0
(12)	communication failure of power supply	Communication failure took place.	output maintained	0	0	0	0	0	0	0
(13)	heater wire breakage abnormality	When control input $\geq 2\%$ of Max. output current AND current level $< 0.4\%$ of Max. output current in current control (temperature/constant EP control), heater wire breakage abnormality is determined.	control abort	0	0	0	0	0	0	0
(14)	abnormal data from power supply	Measurement failure took place due to abnormality in data from power supply.	control abort	0	0	0	0	0	0	0
		Abnormality took place during PID control.	survival mode	0	0	0	0			
(15)	PLC abnormality	Abnormal response from PLC was received.	survival mode	0	0	0	0			
		Communication failure took place.	survival mode	0	0	0	0			
(16)	power failure detection	Power failure or dropping of breaker took place.	control abort	0	0	0	0	0	0	0
(17)	overcurrent detection	Overcurrent was supplied to power supply.	control abort	0	0	0	0	0	0	0

Table 3-14 Table of Limit Functions (3/3)

			control		setting PC		power supply	y rack
	detected item	content	reaction	setting screen	log message	alarm sound	abnormality lamp (red)	buzzer
(1)	preset temperature	Control temperature exceeded the preset temperature upper limit.	alert	light fault	alert	0		
(1)	limit	Control temperature exceeded the preset temperature lower limit.	alert	light fault	alert	0		
(2)	average	Average control temperature exceeded the average temperature upper limit.		light fault	alert	0		
	temperature limit	Average control temperature exceeded the average temperature lower limit.	alert	light fault	alert	0		
(3)	temperature	Control temperature difference exceeded the preset upper limit.	alert	light fault	alert	0		
(3)	difference limit	Control temperature difference exceeded the preset lower limit.	alert	light fault	alert	0		
	average Control temperature difference exceeded the preset upper limit.		alert	light fault	alert	0		
(4)	temperature difference limit	Control temperature difference exceeded the preset lower limit.		light fault	alert	0		
(5)	temperature	Temperature change of over 10°C in 10 secs was observed in control temperature.	alert	light fault	alert	0		
(3)	overchange abnormality	Temperature change of over 10°C in 10 secs was observed for 30 secs in control temperature.	survival mode	heavy fault	abnormality	0		
(6)	temperature data abnormality	I I I I I I I I I I I I I I I I I I I		heavy fault	abnormality	0		
(7)	preset EP upper limit			light fault	alert	0		
(8)	output EP upper	EP load tolerance was exceeded, the excess being 1% or more to less than 5% of Max. power supply output EP.	alert	light fault	alert	0		
(8)	limit	EP load tolerance was exceeded, the excess being 5% or more of Max. power supply output EP.	control abort	heavy fault	abnormality	0		Δ

Table 3-15 Contents of Alert for Each Detection Item (1/2)

E.

			. 1		setting PC		power supply	y rack
	detected item	content	control reaction	setting screen	log message	alarm sound	abnormality lamp (red)	buzzer
(9)	output voltage			light fault	alert	0		
(9)	upper limit	Voltage load tolerance was exceeded, the excess being 5% or more of Max. power supply output voltage.	control abort	heavy fault	abnormality	0	Δ	
(10)	output current	Current load tolerance was exceeded, the excess being 1% or more to less than 5% of Max. power supply output current.	alert	light fault	alert	0		
(10)	upper limit	Current load tolerance was exceeded, the excess being 5% or more of Max. power supply output current.		heavy fault	abnormality	0	\bigtriangleup	\bigtriangleup
(11)	power supply abnormality	Abnormal data was received in STS command from power supply.	control abort	heavy fault	abnormality	0	\bigtriangleup	\bigtriangleup
(12)	communication failure of power supply	Communication failure took place.	output maintained	heavy fault	abnormality	0	Δ	
(13)	heater wire breakage abnormality	When control input $\geq 2\%$ of Max. output current AND current level $< 0.4\%$ of Max. output current in current control (temperature/constant EP control), heater wire breakage abnormality is determined.	control abort	heavy fault	abnormality	0	Δ	Δ
(14)	abnormal data from power supply	Measurement failure took place due to abnormality in data from power supply.	control abort	heavy fault	abnormality	0		
		Abnormality took place during PID control.	survival mode	heavy fault	abnormality	0		
(15)	PLC abnormality	Abnormal response from PLC was received.	survival mode	heavy fault	abnormality	0		
		Communication failure took place.		heavy fault	abnormality	0		

Table 3-15 Contents of Alert for Each Detection Item (2/2)

 $* \ riangle$ denotes that the abnormality lamps and buzzers are turned on only on the power supply racks that contain abnormality-detected power supplies.

3.3.5. Vibration Control System

Among the work concerning the vibration control system, the preparatory work and operation of a vibration analyzer are to be executed by users. For using a vibration analyzer, users are to install accelerometers and cables, and set the analyzer itself by themselves. The points to be taken into account and cautions for the preparation and operation of a vibration analyzer are shown below. Ask the operation company of the facility for more details.

(1) Accelerometers for different usage purposes

As Table 2-8 shows, there are three kinds of accelerometers prepared in this system for different usage purposes according to resolution, applied temperature range, etc. The installation sites where they are used are mostly assumed as below.

- (a) 393M33: inside vacuum vessel (shroud, supporting bench with cooling panel, vacuum vessel, optical window)
- (b) 393B12: inside vacuum vessel (optical bench, TS supporting bench)
- (c) 393B31: seismic slab

Those accelerometers are not restricted to the locations shown above; 393B31, for example, can be mounted on the TS supporting bench in the vacuum vessel, as long as thermal insulation measures were taken by protecting it with insulating materials, etc. (That way, it is applicable in vacuum.)

- (2) Accelerometer I/F
 - (a) Cable connecting I/F

As you can see from Figure 2-11, the cable connection I/F inside and outside the vacuum vessel are different from each other. Inside the vacuum vessel, accelerometers are connected to the MIL connectors at the end of the low noise cables stored in the cutouts on the vacuum vessel body shroud. Outside the vessel, e. g., on the seismic slab, meanwhile, they are connected to the relay box in the lower pit of the vacuum vessel via twisted wire cables. The wiring from the relay box to the vibration analyzer is completed in advance. Accelerometers are designated to be assigned to the channels $1 \sim 15$ for installation inside the vacuum vessel and to the channels $16 \sim 30$ for installation outside the vessel. As for the former group of channels, the wiring between the inner-vessel MIL connectors and the relay box is completed in advance.

(b) I/F for installation

The general description of the I/F for installation is provided as follows.

In case there is not enough number of purpose-made plates mentioned below, users are to prepare them. Accelerometers can be fixed not only to the pre-designated places but anywhere using kapton tape, etc.

① Seismic slab

The seismic slab has screw holes for fixing an I/F on it for mounting accelerometers. That I/F is to be made for the specific purpose.

② Optical bench

Mount a purpose-made plate on the optical bench as the I/F, using the screw holes on it for mounting a TS supporting bench guide.

③ TS supporting bench

Mount a purpose-made plate on the TS supporting bench as the I/F using the hard ports on it.

④ Shroud

There are purpose-made mounting points near the man door on the body part.

5 Vacuum vessel

There are purpose-made mounting points near the manhole at the bottom of the vacuum vessel.

6 Optical window

There are purpose-made mounting points on three places at the bottom of the optical window.

(3) Cautions for executing analysis

Acceleration data can be obtained for three minutes at the sampling frequency of 800Hz due to the restriction of the hard disc capacity. Choose "monitor mode" (ask the operation company of the facility for details) when long-term monitoring is desired.

(4) Data transfer

The acceleration/displacement data acquired by the vibration analyzer and the FFT results obtained by post-processing those data are saved in the work station in binary format. There are three ways of transferring data as below (recording media is to be prepared by users.)

- (a) Copy binary data on magnetic tape, and bring it out.
- (b) Convert binary data to text data, copy it on a data storage device via LAN, and bring it out in MO.
- (c) Copy binary data on a data storage device via LAN in a binary mode, and bring it out in MO (data can be corrupted during transference unless it is kept in a binary mode.)

When using magnetic tape, choose one with a capacity of 525 MB.

3.3.6. Data Acquisition System

3.3.6.1. Registration of Measurement Conditions

Input measurement conditions following the users' manual for the system. (Information can be input in a form of a file.)

The format of the "measurement ID" to be made for measurement ID/mode settings is 8 alphanumeric letters. Do not use half-width spaces before and after a measurement ID.

3.3.6.2. Data Distribution

After a test, the recorded measurement data is to be CSV-converted and handed to a TS manufacturer.

3.3.6.3. Content of Data obtained by Data Acquisition System

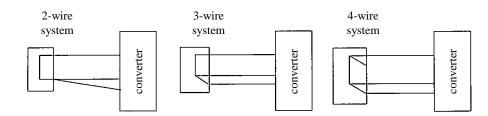
The data obtainable by the data acquisition system are as follows.

- Thermocouple temperature
- · Calorimeter output
- Temperature by resistance temperature detector (abbreviated as RTD hereafter)
- T-QCM output
- IR power supply current/voltage output
- Vacuum pressure

Users can monitor those data from the data displaying devices $1 \sim 4$.

The correspondence between the channel numbers of the input signals for the data acquisition system and the plug signs on the inner-vessel permanent terminal board are shown in Figure 3-4 and Table 3-16. According to them, for example, the thermocouple lines for a TS (600 channels in total) which do not go through IR power supplies correspond to the plugs C1 ~ C41, D1 ~ D6, N1~ N2 on the inner-vessel permanent terminal board, which correspond to the channel numbers 1 ~ 600 in the data acquisition system.

-		1				
channel No.	plug sign	name of data				
	C1 ~ 41					
1~600	D1 ~ 6	TS temperature [*]				
	N1 ~ 2					
613~648	_	standard signals				
601~612	_	spare				
649~672						
1001~1016	_	T-QCM				
3001~3420	_	power supplies for heat sources				


Table 3-16 Correspondence between Acquisition Data and Channel Numbers

Refer to the correspondence table of channels in Appendix A for details.

* Among the pairs of pins, the 12th pair of C14 and C28 is occupied for grounding, which leaves 11 pairs available.

3.3.6.4. Resistance Temperature Detector

The output resistance of the RTDs to be connected is to be between $0 \sim 3$ kW. They are basically to be JAXAcertified products. The resistance levels of measurement data are converted into temperature only via the data processing system. That is, they are displayed as they are in the data gathering system. Refer to the following figure for how RTDs are connected.

Note) The converters all have a three-wire system.

Figure 3-35 Connection of RTDs

Also, a conversion sheet for resistance and temperature is to be prepared in the tabular format of EXCEL. The data acquisition system generates an approximate line by connecting the values designated in the sheet with linear lines. Up to 32 contact points can be specified.

There are default conversion sheets for the ten kinds of RTDs as shown below.

- (1) Thermistor (cf. NASDA-QTS-23648A)
 - THS51CNA501, 102
 - THS51CNB222, 302
 - THS51CNC502
 - THS51CND103
 - THS51CNE153, 303
- (2) Platinum temperature sensor (cf. NASDA-QTS-1043A)
 - N1043501-90-300, N1043501-91-600

3.3.6.5. Wire Breakage Detection Function and How to Use it

(1) Wire breakage detection function

A detection circuit for wire breakage is installed for thermocouple-adopted temperature measurement to detect a broken wire in a thermocouple circuit by deflecting signals to the maximum limit, so that temperature can be controlled to the safety side. The detection circuit for wire breakage is of a voltage impression type as shown in Figure 3-36. When a thermocouple circuit has no defects, the detection current for wire breakage flows into a thermocouple.

(2) Wire breakage detection function in 6mp Radiometer Space Chamber

The wire breakage detection function in this facility has a high resistance of 10 M Ω and voltage of 2.5V loaded on its input circuit as shown in Figure 3-36. That is, detection current of about 0.25 μ A is flowing to the thermocouple side.

When this detection current for wire breakage is interrupted, the wire breakage of a thermocouple is detected.

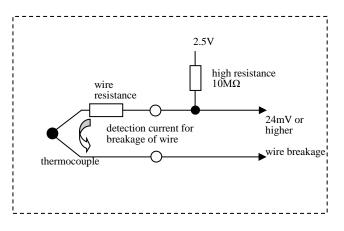


Figure 3-36 Wire Breakage Detection Circuit

(3) How to use it

As can be seen from (2) above, "0.25 μ A \times the voltage for the wiring resistance of a thermocouple" is added to the temperature measured by a thermocouple (electromotive force), because current of 0.25 μ A is flowing to the thermocouple side. That is how wiring resistance increases with a longer wire of a thermocouple, which pushes up measurement errors derived from the detection current for breakage of wire. In case of 6m ϕ radiometer space chamber, the thermocouple wiring resistance to the facility side is 20 Ω , which denotes exceeded measurement accuracy of the logger (within $\pm 1^{\circ}$ C) when the thermocouple wiring resistance to the TS side goes over 80 Ω .

Therefore, it is recommended to follow the instructions in Table 3-17 when using the wire breakage detection function.

thermocouple wiring			over 80Ω
resistance for the TS side	80Ω or less	temperature monitor channel	temperature control channel
ON/OFF of wire breakage detection function	It can be either turned on or off.	It is recommended to be turned off.	It is to be turned on.
measurement accuracy	-200° C ~ -130° C: Ask the facility staff because measurement errors differ depending on temperature (nonlinear.) -130° C ~ : within $\pm 1^{\circ}$ C	-200° C ~ -130° C: Ask the facility staff because measurement errors differ depending on temperature (nonlinear.) -130° C ~ : within $\pm 1^{\circ}$ C	The following accuracy can be assured if system calibration is executed in advance using the wiring resistance of a thermocouple. $-200^{\circ}C \sim -130^{\circ}C$: Ask the facility staff because measurement errors differ depending on temperature (nonlinear.) $-130^{\circ}C \sim :$ within $\pm 1^{\circ}C$
screen display for wire breakage	 When wire breakage detection function is on : The data display area shows "breaking of wire." When wire breakage detection function is off : The graph display of temperature becomes unstable. 	 In the data display area and the graph display area; The graph display of temperature becomes unstable. Abnormal values are displayed. 	The data display area shows "breaking of wire."

 Table 3-17
 Recommended Usage Instructions for Wire Breakage Detection Function (1/2)

thermocouple wiring		over 80Ω	
resistance for the TS side	80Ω or less	temperature monitor channel	temperature control channel
how to use the function (including restrictions, cautions, etc.)	With no wire breakage, normal temperature measurement is possible regardless of the wiring resistance of a thermocouple.	 With no wire breakage, normal temperature measurement is possible regardless of the wiring resistance of a thermocouple. When unstable temperatures or abnormal values are indicated, it is possible to check the existence of wire breakage by temporarily turning on the wire breakage detection function. 	 When wire breakage takes place, the heat source power supply maintains the preset values (e. g., 50% output, etc.) When system calibration is required to be executed by the facility staff prior to the installation of a TS into the chamber, that is subject to additional charge to cover calibration on about 30 channels a day in the chamber. Re- execution of system calibration will be necessary after the test to restore the facility to the pre-test state (which costs the same amount of charge as above.) Users are to prepare a list of channels to be calibrated and thermocouple wires with the equivalent resistance as of those used for the test in advance.

 Table 3-17
 Recommended Usage Instructions for Wire Breakage Detection Function (2/2)

This may not be the latest edition.

3.3.6.6. Cautions

The data input device, the data gathering device, and the data processing device have their power supplied from the uninterruptible power supply. When power failure takes place, take measures, e. g., normal termination operation, etc., within the operation time (10 minutes) of the uninterruptible power supply system.

3.3.7. Utility Facilities

3.3.7.1. Clean Booth I/F

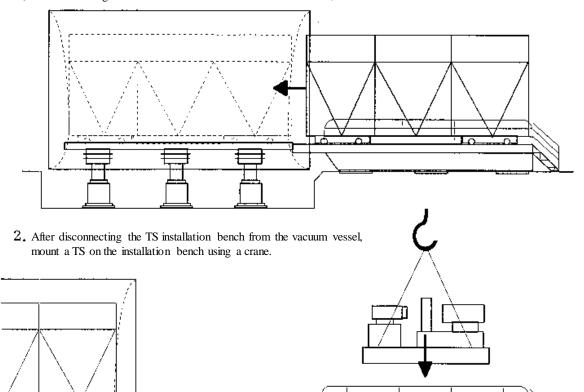
(1) General operation procedure

The outline flow of executing an optical performance confirmation test on a TS in the clean booth while mounted on the moving dolly is shown in Figure 3-37. It is to be noted that in the procedure of carrying the moving dolly into the vacuum vessel, when its ducts have to be removed, the clean booth cannot maintain the cleanliness of ISO5[ISO14644] (class M3.5, equivalent of class 100 [FED-STD-209E].)

(2) I/F inside clean booth

The effective test area (volume) in the clean booth is 3,500 mm (width) \times 5,000 mm (depth) \times 2,110 mm (height, with a clearance of 100 mm from the thermohydrometer.) (cf. Figure 3-38.)

- (3) Required time for achieving ISO5 [ISO14644] (class M3.5, equivalent of class 100 [FED-STD-209E]) It takes about thirty minutes to establish an ISO5 [ISO14644] (class M3.5, equivalent of class 100 [FED-STD-209E]) environment in the clean booth with no personnel inside.
- (4) Max. capacity in the room


The clean booth can hold up to three people.

(5) Monitoring of temperature/humidity

The temperature and humidity data inside the clean booth can be monitored and checked during the operation of the clean booth from its operation console via three points for each of temperature and humidity. Among the three points, the temperature and humidity of the one in the center are recorded and saved in the data acquisition system.

(6) Configuration of related equipment

The usage of the clean booth requires air-conditioning ducts to be configured, and therefore limits the usable range for setting test-related equipment next to the chamber as shown in Figure 3-39.

1, After connecting the TS installation bench to the vacuum vessel, move the clean booth into the vacuum vessel.

3. After connecting the TS installation bench to the vacuum vessel again, move the clean booth onto the installation bench.

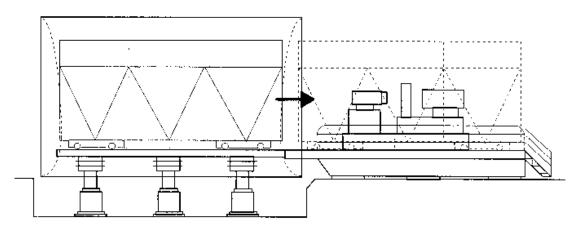


Figure 3-37 Outline Flow of Clean Booth Operation

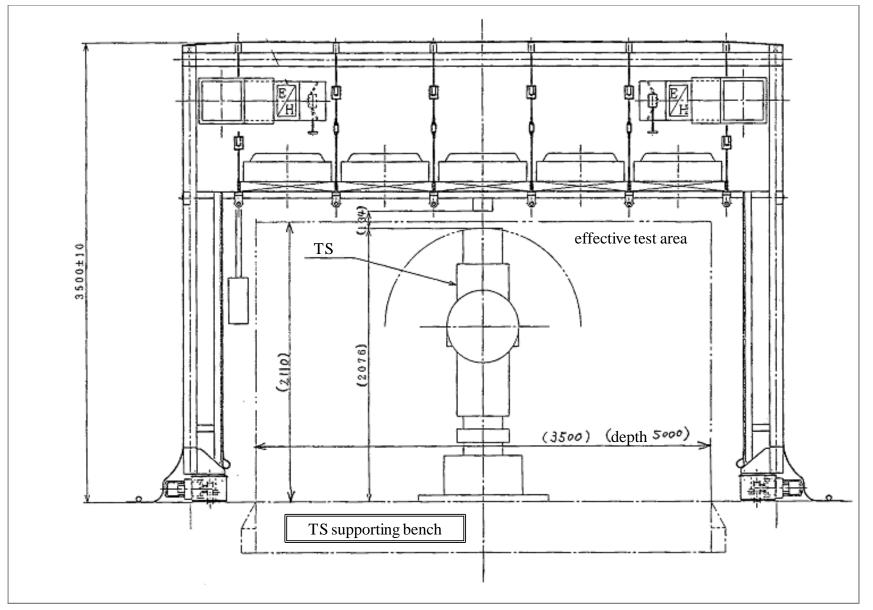


Figure 3-38 Height inside Clean Booth

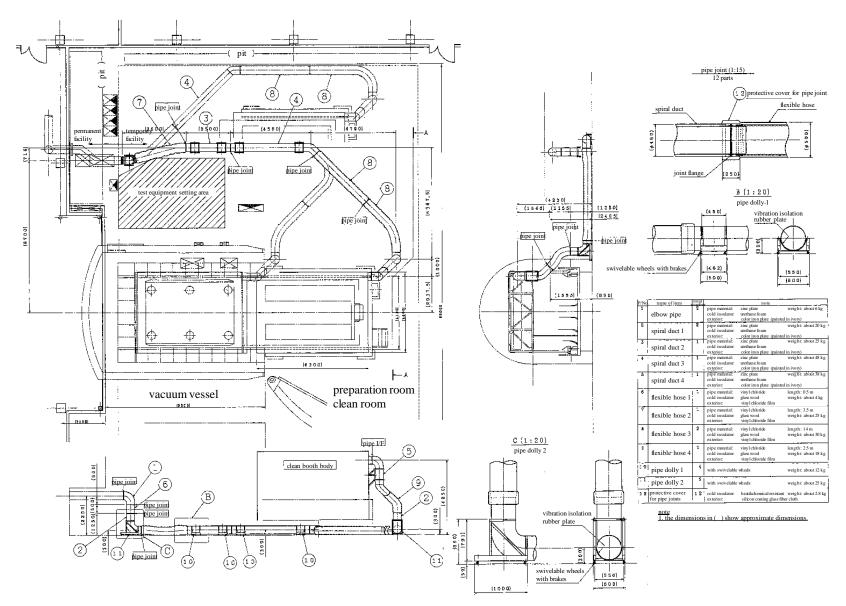


Figure 3-39 Configuration of Clean Booth Ducts

3.4. Facility Belongings

This facility is equipped with the following connectors, etc., necessary for obtaining data during a test, which can be rented out for users. The procedures for renting and returning the items are shown under the table.

item	usage purpose	model #	owned qty
connector (plug)	for signals, EP, IR power supplies, and	MS3106B18-1S	—
	RTDs	MS3106B22-23S	—
		MS3106B32-17S	—
	for thermocouples	AFD56-16-26SN	_
		JA3106B24-J28SC	_
socket contact*	for thermocouples	0603-34-2039	_
		105372	—
		NM-104-845#1	—
		NM-104-845#2	—
calorimeter	for radiation intensity measurement	ST4356A	30
T-QCM	for contamination monitoring	MK-10 sensor	4 sets
		MODEL1900 processor	
		MODEL1800 temperature controller	

* Socket contacts (for thermocouples) are crimp-type, and are therefore not reusable. Users are to prepare them by themselves. In case they cannot be procured on time for the schedule, those equipped in the facility are also available. In that case, make sure to return equivalent items later.

Note) Users are also to prepare plugs by themselves as much as possible. In case they cannot be procured on time for the schedule, those equipped in the facility are also available. In that case, users are to pull out the pins of thermocouple plugs, or clean solder off other equipment before returning them.

[Procedures for Renting and Returning Items]

- (1) When renting items, users are to fill in the acknowledgement form of rent (prepared by the operation company of the facility) with the names, quantity, etc., of necessary items.
- (2) The items are to be returned as soon as the tenancy is over. Expendables (e. g., socket contacts, etc.) are to be replaced by the same number of the same new items.
- (3) The items with solder applied (e. g., connectors, etc.), if any, are to be returned after wiping off the solder clearly, or to be refilled with the same number of the same new items.
- (4) The operation company of the facility will explain anything not yet clear to users concerning the procedures for renting and returning items.

3.5. Building I/F

(1) Preparation room

This room, where the chamber is located, is used as a working area for users to carry out preparatory work and tests.

(a) Gradient of floor and load capacity

The floor of the preparation room has a gradient of 3/1000 or less because the TS installation device moves on it. The floor therefore has a specified load capacity, which is 9.8 kPa for widely-spread load and 7.85 MPa (= compressive strength of floor coating material. The compressive strength of concrete (for temporary load) is 23.8 MPa) for concentrated load (e. g., casters of a bench, etc.) The floor requires prior curing even for an item weighing less than the specified load capacity if it has any possibility of damaging the floor.

(b) Hand-pallet truck

A hand-pallet truck can be used for moving heavy items in the preparation room. There are largesize and small-size hand-pallet trucks. The former is the same as the TS installation dolly (cf. section 2.2.2), with the same dimensions and capacity. The basic descriptions of the smaller hand-palled truck are shown below.

	hand-pallet truck (small)
dimensions	$1,\!230W\times1,\!600L\times193H$
capacity	2,400 kg

Table 3-19 Basic Descriptions of Hand-pallet Truck

When moving a TS, etc., using the larger hand-pallet truck, it is convenient to use the satellite mounting bench (large) (cf. Figure 3-40.) Its mass and the maximum load mass are 2,100 kg and 4,000 kg, respectively.

(c) Temperature/humidity monitoring

The temperature and humidity in the preparation room can be displayed on a portable monitor.

(d) Particles (cleanliness)

Particles are being counted by the dust counter located in the preparation room.

(e) Max. capacity in the room

The preparation room can hold up to 15 people.

(2) Measurement and control room

Users carry in check-out devices, etc., into this room, for performing data analysis, etc.

(3) Distribution boards for users

The installation sites and usage purposes of the distribution boards and plug socket boards necessary for performing a test are shown in Table 3-20. Each distribution board has a plug socket board at the lower part of itself. In addition to that, LS-1B and 1C each has a surface plug socket board (A.) Refer to Figure 3-41 for their locations. The WBD diagram of distribution boards is shown in Figure 3-42. The specifications of the plug socket board at the lower part of a distribution board and the surface plug socket board (A) (configuration of sockets) are shown in Figure 3-43.

Since the distribution boards are also connected to the emergency power supply system, they can all gain power from the private power generator in the power building in case the commercial power supply is interrupted. It takes about 10 minutes before the private power generator finally gets to supply power, which then starts supplying power to the distribution boards in the order of priority. Likewise, power failure takes place for about 10 minutes at the time of power restoration by the commercial power supply.

distribution board #	installation site	usage purpose
LS-1B	preparation room	for sockets and devices
LS-1C	preparation room	for sockets and devices
LS-1E	fore-room	for sockets and devices
LS-1I	measurement and control room	for sockets and devices

Table 3-20 List of Distribution Boards for Users

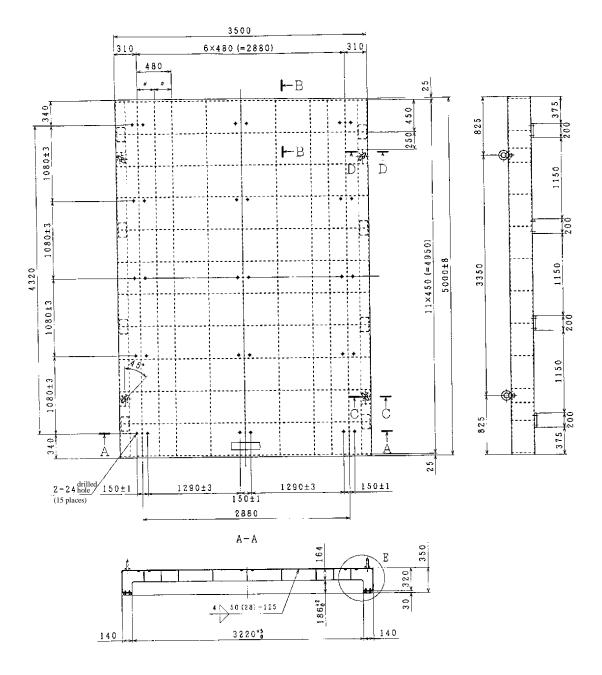


Figure 3-40 Mounting Bench (Large)

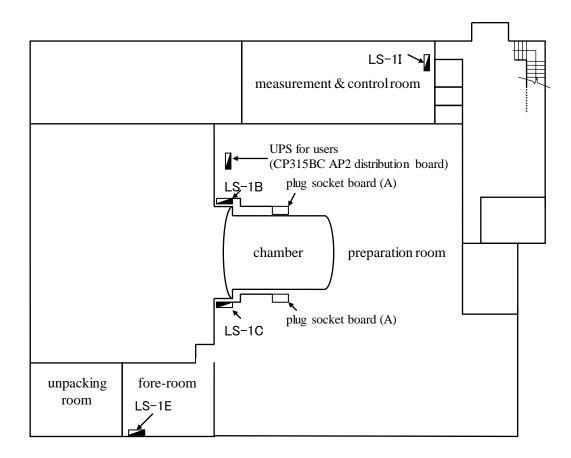
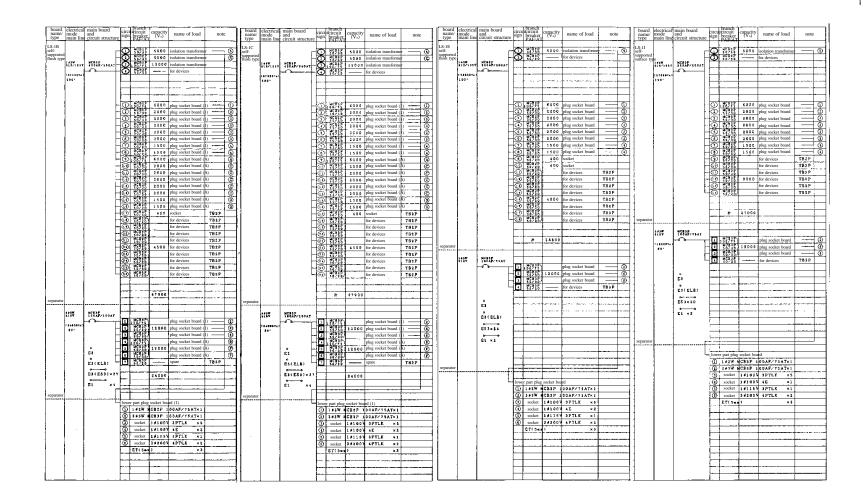
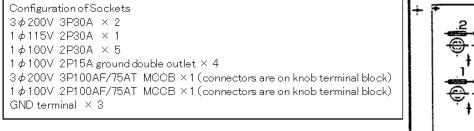
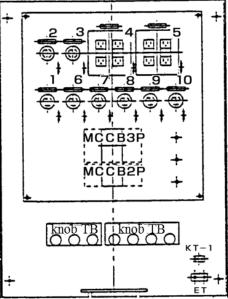
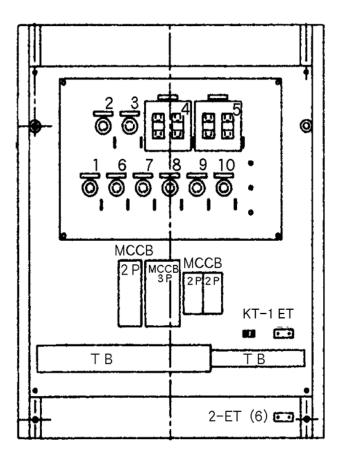
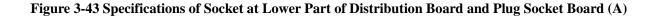





Figure 3-41 Configuration of Distribution Boards/Plug Socket Boards




Figure 3-42 WBD Diagram of Distribution Boards

Configuration of Sockets
3¢200V 3P30A ×2
1ϕ 115V 2P30A \times 1
$1\phi100V$ 2P30A \times 5
1 ϕ 100V 2P15A ground double outlet × 4
$3\phi200V$ 3P100AF/75AT MCCB $ imes$ 1
1ϕ 100V 2P100AF/75AT MCCB $ imes$ 1
1ϕ 220V 2P 50AF/50AT MCCB $ imes$ 2
GND terminal × 3

(4) Cranes

There are cranes between the unpacking room and the fore-room, and in the preparation room, which can be used for carrying in a TS, etc. When using them, they are to be operated only by qualified people, who are always to fill in the specified record form with the track record of use. There is a rail switch mechanism between the unpacking room and the fore-room crane, which allows the transportation of items with the crane between the two rooms with the shutter open. The specifications of the cranes are shown in Table 3-21. Each crane is oil-drip proofed, but a TS is to be protected by a cover, etc., for precaution's sake. Refer to Figure 3-45 for the movable range of each crane. The cranes require about ten seconds to be ready for operation after the "on" button on the pendant switch is pressed due to the installed inverter, while there is a little time lag before completely stopping after the "stop" button is pressed (same with the case of their activation.)

The hook is to be wound up to the limit after using the crane.

installation site	unpacking room ~ fore-room	preparation room
type	monorail hoist type 4.8t	doublerail hoist type 4.8t
rated load	4.8t	4.8t
lifting height	11.0m (below hook: 10.71m)	13.6m (below hook: 13.54m)
hoist speed (Min/max)	0.4/4.0 (m/min)	0.4/4.0 (m/min)
traverse speed (Min/max)	1.25/12.5 (m/min)	1.25/12.5 (m/min)
travel speed (Min/max)	2/20 (m/min)	2/20 (m/min)
operation method	press button on the floor	press button on the floor

Table 3-21 Specification of Cranes

Note 1) The speed can be changed by pressing the buttons for low and high speeds.

Note 2) The low speed at the first step is changable. The speed range, however, is within 1/10 of the top speed.

(5) Unpacking room

The shutter facing the outside has a slight opening, through which rain, etc., can enter the room at the occasion of typhoon, etc. Therefore, no jigs or measurement instruments are to be placed near the shutter.

(6) UPS for users

There is a UPS available to users in the preparation room. Contact the facility operation company in advance if it is planned to be used.

(a) Location

Refer to Figure 3-41.

- (b) Specifications
 - ① Max. total output capacity: 15.0 kVA
 - ② Backup duration: 10 min or longer
 - ③ Output rating/wiring number

output rating		wiring # on branch power board
	total: 4 circuits	U1, V1, W1
AC200V three phase three wire 50Uz		U2, V2, W2
AC200V three-phase three-wire 50Hz		U3, V3, W3
		U4, V4, W4
	total: 3 circuits	U5, V5
AC200V single-phase two-wire 50Hz		V6, W6
		W7, U7
	total: 3 circuits	U8, N8
AC100V single-phase two-wire 50Hz		V9, N9
		W10, N10

Table 3-22 Specification of UPS

* Wiring is to be performed after checking the wiring numbers shown on the branch power board at site.

(c) Others

A circuit diagram of the branch power board is shown in Figure 3-44.

The total load from the equipment mounted by users is to be 75A or less.

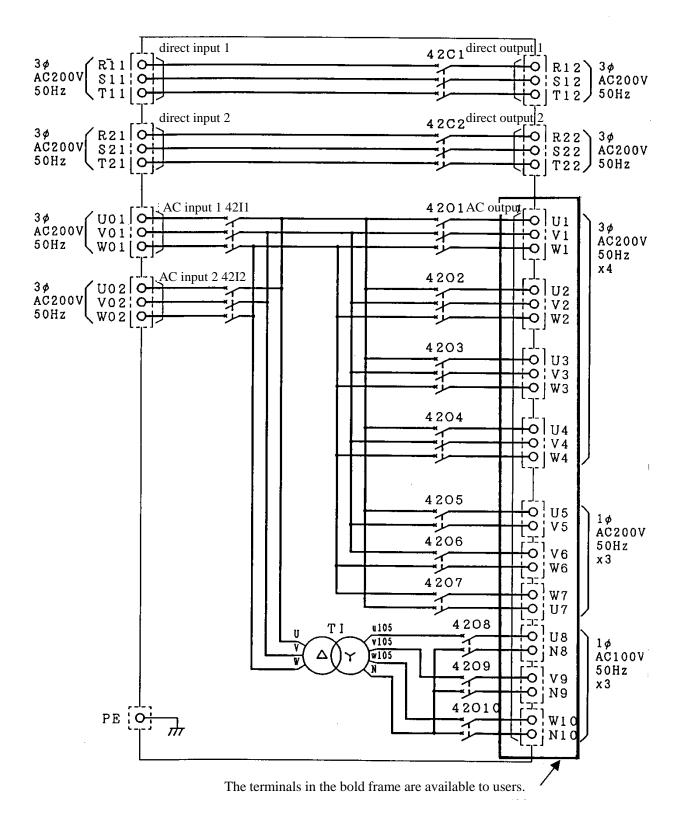


Figure 3-44 Circuit Diagram of Branch Power Board for Users

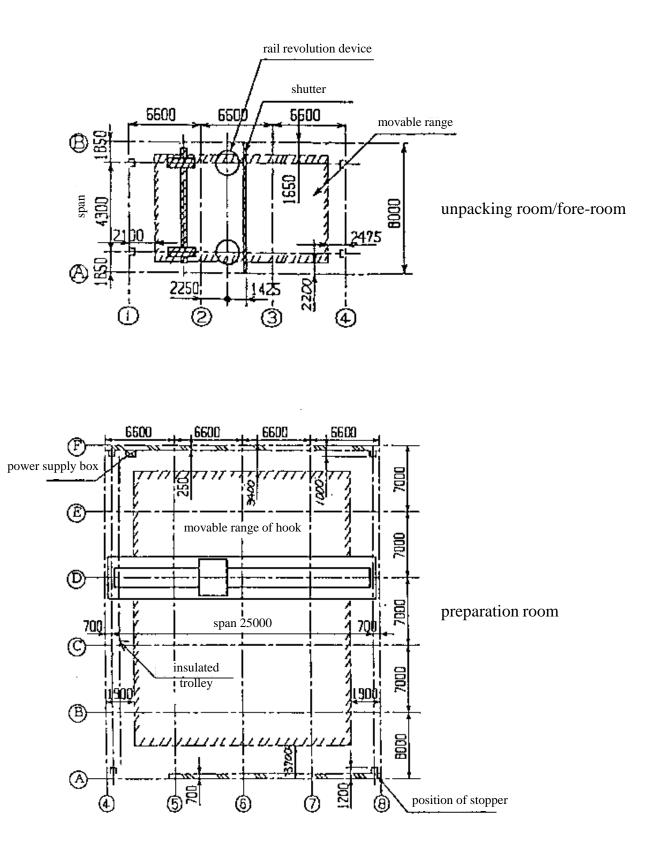


Figure 3-45 Movable Range of Crane in Each Room

- (7) Contamination control
 - (a) The requirements for optical sensors are becoming more and more demanding compared to general TSs. That is why this facility executes more strict contamination control than other facilities in Tsukuba Space Center. Precisely, the following measures are being taken.
 - ① Particulate contamination is controlled abiding by ISO7 [ISO14644] (class M5.5, equivalent of class 10,000 [FED-STD-209E].)
 - ② Molecular contamination is prevented by refraining from using oil as the lubricant for the sliding parts of equipment used in the preparation room as much as possible; otherwise, the oil-applied parts are tightly sealed.
 - (b) When testing an optical sensor that calls for especially demanding cleanliness requirements, the clean booth will help establishing the ISO5 [ISO14644] (class M3.5, class 100 [FED-STD-209E]) environment.
 - (c) The preparation room and the clean booth are designed to retain cleanliness for their Max. capacities of fifteen and three people, respectively. The number of people exceeding the capacities may fail to satisfy the cleanliness. Never enter or leave the preparation room without clearly indicating the entering/leaving state on the management board at the entry/exit.
 - (d) NVR plates for detecting non-volatile residue are set in the chamber all through a test to check for contamination on a TS and the facilities. Refer to Figure 3-46 for the installation sites of NVR plates. It takes about a week to complete the analysis on the amount of contamination, and users may be required to clean inside the chamber or perform a verification test (including analysis) at users' expense when the analysis results suggest the existence of contamination on the facilities (viz. the amount of NVR on work floor: 1.5 mg/0.1m² or more^{*}). It takes about two weeks to clean inside the chamber and complete a verification test.
 - * Policy for contamination measurement in thermal vacuum tests (GCT-2011023)

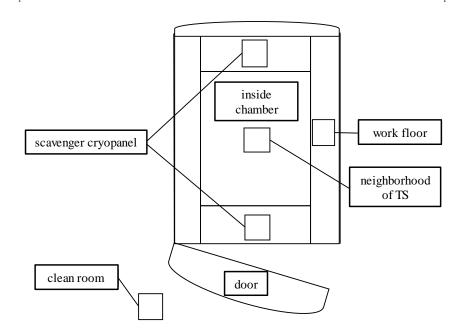


Figure 3-46 Diagram of Installation Sites for NVR Plates

(e) General cautions in the clean room

The rules shown below are especially crucial for users to follow when using the clean room.

① Clean garment

Users are to wear one of the following clean garments depending on the cleanliness requirements of a TS.

ISO5 [ISO14644] (class M3.5, equivalent of class 100 [FED-STD-209E]): overall, hood, mask, boots

ISO7 [ISO14644] (class M5.5, equivalent of class 10,000 [FED-STD-209E]): overall, hood, boots (or shoes, shoes cover.)

ISO8 [ISO14644] (class M6.5, equivalent of class 100,000 [FED-STD-209E]): overall (the kind same as those used in other clean rooms is acceptable), cap, short boots.

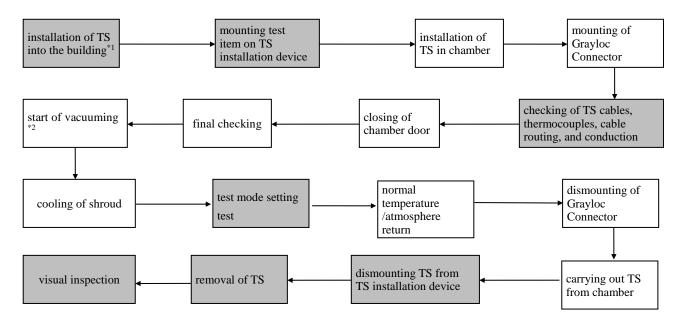
When coping with contamination-sensitive surfaces, wear a pair of gloves in addition to the items above.

For a test in a clean booth, a clean garment that meets class 100 requirements is to be prepared. For reference, some examples of clean garments (model numbers) used by the facility are shown below.

Overall: FB102C Hood: FB405C Boots: FE652C Mask: FZ554C

Gloves: Cleanfast1000

manufactured by Toyo Lintfree Co.


- * The clean garments used by facility-side personnels are the kinds to satisfy the cleanliness standards of both ISO5 and ISO7 [ISO14644.]
- ② Stationary articles

Refrain from bringing in paper into the preparation room to the extent possible. If not avoidable, choose dust-free paper. As a writing tool, use a ballpoint pen.

4. Execution of Tests

4.1. Test-related Work Procedure

Each work in the course of a test is executed based on the test implementation plan sheet presented by the TS side. The following Figure 4-1 shows a general flow of test-related work. (The hatched boxes show the work to be done by the TS side.)

- *1 A TS is to be left in the fore-room for about 1 hour to wait for the recovery of cleanliness, before being carried into the preparation room.
- *2 A test schedule is to be arranged the way low vacuuming starts at 13:00.

Figure 4-1 Test-related Work Flow

4.2. Test Procedure

4.2.1. General Description of Test

In this facility, tests are classified in two ways according to their purposes and methods. Each classification is described below. The selectable test methods are determined by test purposes. Refer to Table 4-1 for more details.

(1) Classification according to purposes

In this facility, environmental tests, e. g., (a) radiometer optical property tests, (b) IR radiation thermal balance/thermal vacuum tests, etc., can be performed. The general description of each environmental test is provided below. The environmental conditions of each test are described in Table 4-2.

(a) Radiometer optical property test

It is a test for checking the optical properties, etc., of a TS in the high vacuum and cryogenic temperature simulating outer space and in the atmospheric pressure and normal temperature.

(b) IR radiation thermal balance/thermal vacuum test

A thermal balance test confirms the thermal design, etc., of a TS in the high vacuum and cryogenic temperature that simulate outer space, while a thermal vacuum test confirms the environmental resistance of equipment mounted on a TS to the thermal environment in space, that is, high and low temperatures and the back-and-forth transition between them. IR lamps or heaters are used as the heat sources.

(2) Classification according to methods

The following three modes can be chosen as a testing method.

(a) Mode 1

In this mode, shrouds are started to be cooled after the chamber is vacuumed with a cryosorption pump to the level passed the discharge-hazardous range. That way a TS can be protected from excessive cooling. <u>Thermal vacuum/balance tests are basically performed in this mode</u>.

Note) There is a case in which the reached level is found to be in the discharge-hazardous range when a cryosorption pump is stopped after the shroud temperature is raised during atmosphere return, depending on the amount of outgas from a TS.

(b) Mode 2

In this mode, the chamber is started to be vacuumed with a cryosorption pump after the shroud is cooled down, for the purpose of performing thermal vacuum/balance tests. <u>This mode enables the quick</u> establishment of test conditions when there is no fear of damage on a TS caused by excessive cooling.

(c) Mode 3

This mode denotes a vacuum test in normal temperature. That is, only a vacuum state is established without cooling the shroud.

The correspondence between test purposes and test methods is shown below.

test purpose	test method									
radiometer optical property test	modes 1, 2, 3									
IR radiation thermal vacuum/balance test	modes 1, 2									

Table 4-1 Test Methods Corresponding to Test Purposes

Table 4-2 Summary of Kinds of Tests and Environmental Conditions	
Table 4-2 Summary of Kinds of Tests and Environmental Conditions	

Г

	kinds of tests	radiometer optical property test	IR radiation thermal balance/thermal vacuum test
	environment		
((1) chamber pressure	1.33×10^{-4} Pa or less	1.33×10^{-4} Pa or less
		or atmospheric pressure	
(2) IR intensity	20 kW (max)	20 kW (max)
((3) shroud	100K or lower	100K or lower
	temperature	or 300K (normal temperature)	

4.2.2. Standard Chamber Vacuum Curve, etc.

Figure 4-2 "Standard Chamber Vacuum Curve, etc." shows a standard chamber vacuum curve in mode 1 (with no TS placed inside), a standard operation procedure, and a shroud temperature curve.

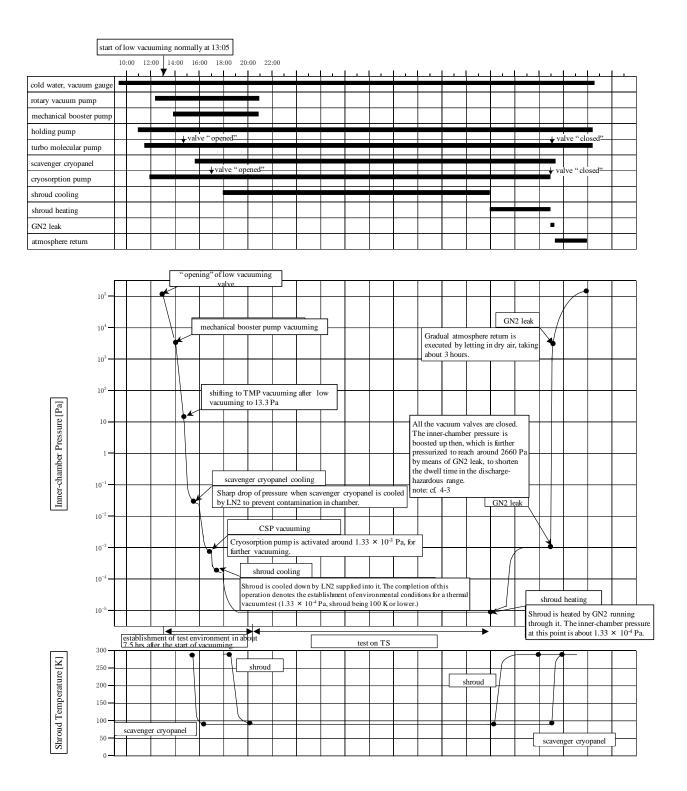


Figure 4-2 Vacuum Curve in Standard Chamber, etc.

4.3. Power Failure Protective Measures

The general flow of measures against momentary power interruption or power failure is shown in Figure 4-3.

- (1) Momentary power interruption
 - (a) All the devices but the instrument air compressor in this facility are equipped with two-second momentary power interruption measures, which enables continued operation of vacuum pumps, etc., during power interruption of two seconds or shorter.
 - (b) Even though the instrument air compressor is aborted at the momentary power interruption of shorter than two seconds, it has no impact on test environments owing to the automatic backup by GN₂.
- (2) Power failure
 - (a) In the power failure of two seconds or longer, all the mechanical vacuuming pumps, etc., are aborted, except for the cooler for shrouds and scavenger cryopanels. Then, it is to be determined whether to keep cooling the shrouds to avoid rapid pressure raise or stop cooling them by introducing GN₂, based on the power failure duration and the state of excessive cooling protection measures being taken for a TS. (Generally, continuous cooling of shrouds is chosen while waiting for power recovery.)
 - (b) When power failure lasts for two seconds or longer, the inner-chamber pressure rises up to the discharge-hazardous range $(1.3 \times 10^{-3} Pa)$ in about ten minutes. Therefore, discharge prevention measures, e. g., shifting a TS into a launch mode, etc., are to be taken as soon as power failure takes place.
 - (c) A 15 kVA UPS is prepared in the preparation room for users. It is recommended that the heater systems (e. g., power supply for IR heaters) wished to be heated during power failure or the checkout devices, etc., wished to be controlled and monitored during power failure be connected to the UPS in advance. Refer to section 3.5 for how to connect the UPS for users.

The power supply for IR heaters and checkout devices not connected to the UPS for users will be turned off during power failure.

- (d) After about 10 minutes of power failure, the emergency power generator in the power building of Tsukuba Space Center starts supplying EP. Its pre-activation stand-by time and EP capacity vary depending on the state of its application by other facilities and equipment. Figure 4-4 shows the pressure transition inside the chamber during an assumed power failure of 20 minutes.
- (e) The control device, data processing device, a remote setting PC for the power supply for IR heaters, communication system, and oximeter are connected to a UPS (uninterruptible power supply) which can supply power for 10 minutes or longer.
- (f) In case power failure is not recovered for 10 minutes or longer, the saved data is to be stored in the external medium to make provision for hard disc failure due to the forced termination of the data acquisition system (measurement can be continued.)
- (g) The power supply from the emergency power generator in the power building of Tsukuba Space Center is finite. Therefore, unnecessary lights or devices are to be turned off while the emergency power generator is supplying EP, for the sake of saving EP to the extent possible.

- (h) Once the emergency power generator in the power building of Tsukuba Space Center starts to supply EP, high vacuum operation $(1 \times 10^{-4}$ Pa or less) can be restarted with the help of cryosorption pumps (CSP) and turbo molecular pumps (TMP.)
- (3) Power restoration
 - (a) A momentary power interruption takes place at the moment of power restoration when power supply shifts from the emergency power generator in the power building of Tsukuba Space Center to the regular power supply.
 - (b) High vacuum operation can be recovered in about thirty minutes after power restoration unless GN₂ or dry air was introduced into the chamber during power failure.

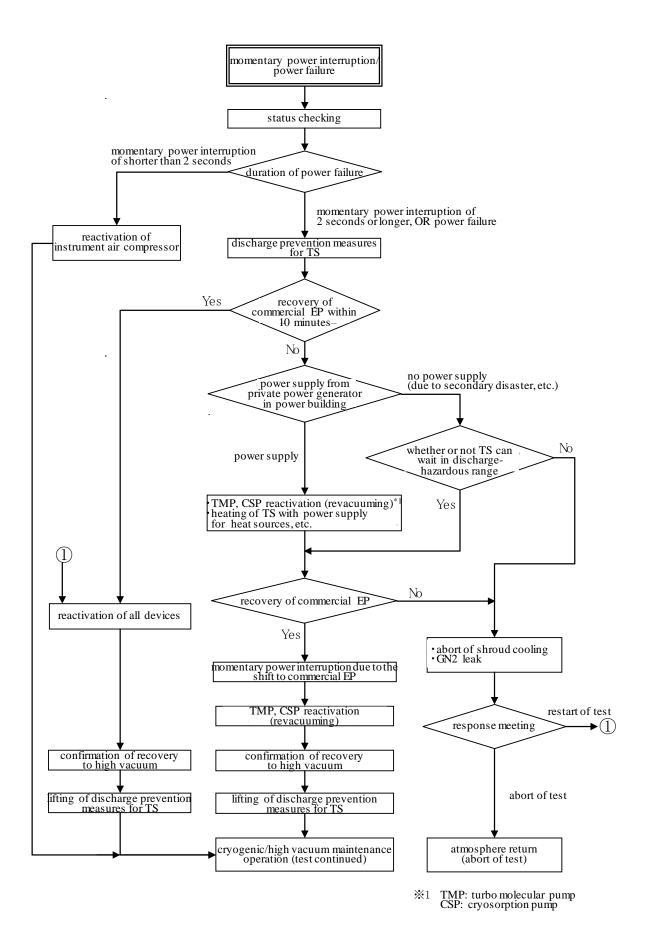


Figure 4-3 Standard Flow in Momentary Power Interruption and Power Failure

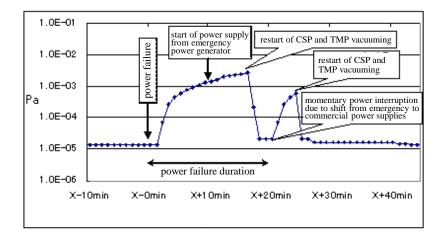


Figure 4-4 Inner-Chamber Pressure Transition during 20-minute Power Failure

4.4. Other Remarks

(1) Matters to be confirmed for test

The environment in the space chamber is the same as outer space in that it cannot be accessed promptly even when abnormalities are found on a TS. Bearing that in mind, the following matters are to be checked.

- (a) Matters concerning chamber contamination
 - ① Whether or not anything with high steam pressure or susceptibility to evaporation from heating is used in the chamber.
 - ⁽²⁾ Whether or not commercial products that are not made for the usage in space are being used. (Are there commercially available glues or adhesive tapes being used?)
 - ③ Is the applied material less likely to generate outgas?
 - ④ Whether or not a TS, jigs, etc., that are coated with paint have been put through enough baking.
- (b) Matters concerning vacuum
 - ① Whether or not there is gas leakage from gas-sealed equipment.
 - ② Whether or not there is any chance that MLI might block vent holes (See if MLI does not cover the vent holes of tanks, etc.)
 - ③ Whether or not MLI has vent holes, or one end of it is not fixed.
 - ④ Whether or not there is a problem when inner or outer pressure is loaded.
 - (5) Whether or not the vacuum seals on vacuum seal connectors have been closely inspected.
 - (6) Whether or not leakage has been thoroughly inspected in case the vacuum vessel has any feedthrough equipment (waveguide, tube, etc.)
- (c) Harmful effects of low temperature
 - ① Whether or not the material has low temperature brittleness that can cause a problem.
 - ② Whether or not polymer material (rubber, etc.) is used in the parts that become cold.
 - ③ Whether or not there is any item whose temperature won't go up readily during normal temperature atmosphere return. If there is any, it is to be checked if it is equipped with any mechanism to raise its temperature.
 - ④ Whether or not a fluid is freeze-proven, if it is planned to be used.
- (d) Matters concerning vacuum discharge

- ① Electric discharge is generally said to take place in the pressure range around $1.33 \times 10^{-3} \sim 1.33 \times 10^{4}$ Pa, where loading of high voltage may damange a TS due to electric discharge (cf. JERG-2-130-HB005 Handbook of Thermal Vacuum Test, section 3.7.1.)
- ② It is required that the electric-discharge-hazardous pressure range be determined by the TS side and reported to the facility-side personnel in advance.
- ③ It is to be confirmed that loading of voltage is avoided in the electric-discharge-hazardous pressure range, or discharge prevention measures are taken in case that is not possible.
- (e) Considerations for high pressure gas safety law
 - (1) The facility-side pipes in the vacuum vessel of this facility are not subject to the High Pressure Gas Safety Law. When users prepare LN_2/GN_2 panels, make sure they are designed not to be the regulated objects of the law.
- (f) The I/F to the facility is to be checked not only by a drawing, but also by visual observation on it.
 - ① I/F to TS supporting bench
 - ② I/F to inner-chamber protruding objects (sensors, work floor, tubes, etc.)
- (2) Important matters for using this facility

Here, especially important matters concerning the equipment of this facility are provided for the case of using it. For more detail, refer to the users' manual of each equipment.

- (a) General matters
 - ① Users are to mount a TS on a TS supporting bench and control the IR heat source power supply (when used) by themselves, following the users' manual. (The TS supporting bench is brought in and out of the chamber by the facility-side personnel.)
 - 2 Especially the domestic products of Aeroglaze Z306 (black), which is used for painting satellites, tend to generate a big amount of outgas, and therefore is to be refrained from being used inside the chamber to prevent contamination. When it is used nevertheless, sufficient baking is required in advance. In case of using paint whose outgas components are unknown, outgas analysis is to be performed on it, followed by the same procedure as above if it is found to generate excessive amount of outgas.
 - ③ The air introduced into the chamber during atmosphere return passes through a drier, which generates absorption heat from the absorbent filled inside. That absorption heat together with the compression heat generated from the introduced air sometimes raises the temperature of air introduced into the chamber (the level of the temperature rise depends on the outdoor temperature and humidity, reaching highest in summer.) Users are to pay attention to this point when performing a test on a temperature-sensitive TS, taking necessary measures for it.

(b) Chamber system

- ① When feed-through flanges such as a waveguide or a connector are used on the chamber nozzle for users, they are to be subject to the prior checking on leakage from their vacuum-sealed parts.
- ⁽²⁾ The hard ports being made of SUS304, users are to watch out for "seizure" if they prepare screws that are SUS products whose surfaces are not coated. In case an SUS screw is thrusted into the helisert of the hard port, enough caution is required to do it by hand at first, for example.
- ③ Emergency stop switch

This facility has emergency stop switches, which abort all the facilities when emergency stop is needed (ex. a person is locked into the chamber.) Users are to check the actual switch with their own eyes before using the facility.

• Emergency stop switch inside chamber

The "switch" consists of the receptacle and plug of an MS connector; the contact point is disconnected when the plug is pulled out, which activates the interlock to abort the facility. In case someone was locked into the chamber, he or she has to pull out the switch. The location of the switch is shown in Figure 4-5.

- Emergency stop switch inside control room It is a button-type switch, which aborts all the facilities when its protection pin is pulled out and the button is pressed. The location of the switch is shown in Figures 4-6 and 4-7.
- Emergency stop switch in preparation room
 It is a button-type switch, which aborts all the facilities when its protection pin is pulled out
 and the button is pressed. The location of the switch is shown in Figures 4-6 and 4-8.

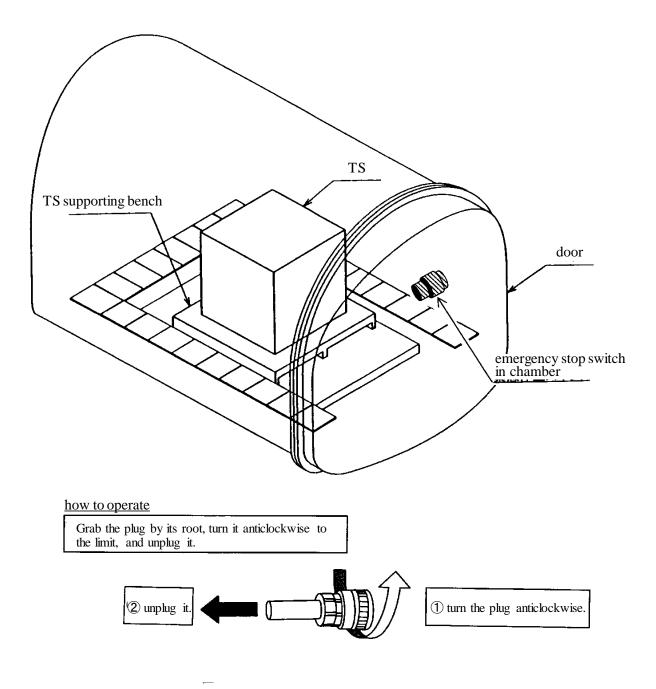
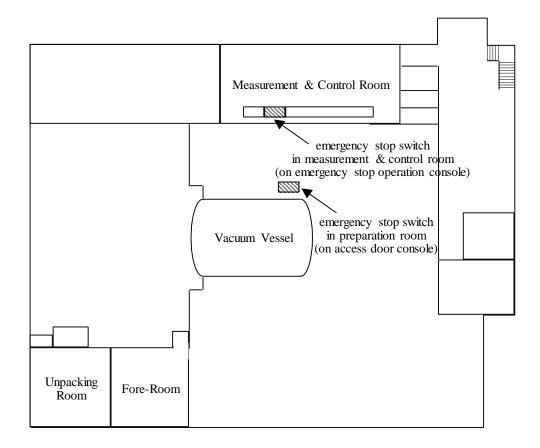



Figure 4-5 Emergency Stop Switch inside Chamber

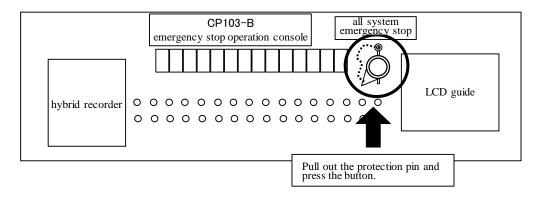


Figure 4-6 Locations of Emergency Stop Switches in Preparation Room and Measurement & Control Room Figure 4-7 Location of Emergency Stop Switch on Emergency Stop Console Panel in Measurement & Control Room

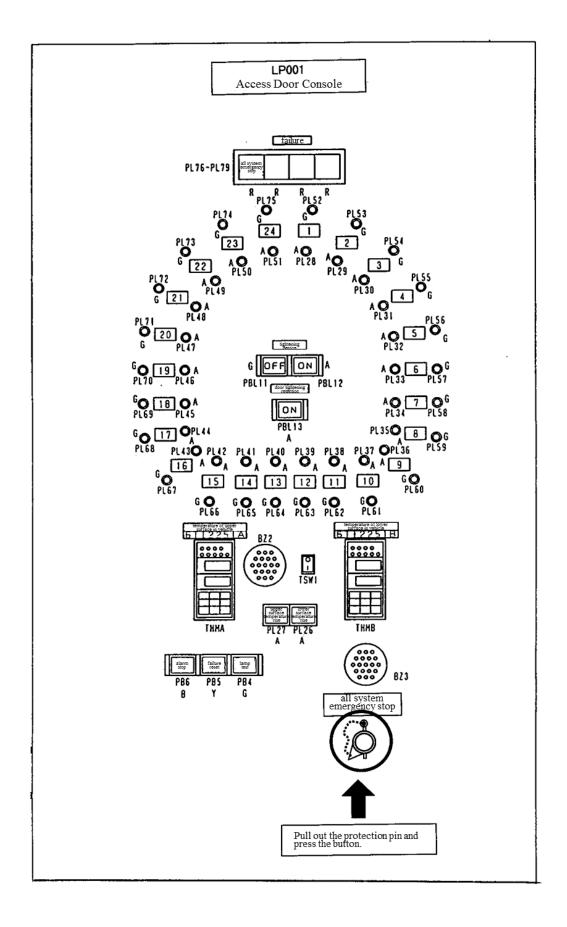


Figure 4-8 Position of Emergency Stop Switch on Preparation Room Access Door Console Panel

4.5. Documents to be Submitted at K/O Meeting

The following documents are to be submitted to the personnel in charge of the facility at the K/O meeting.

- Test implementation plan
- Requirements for the facility (cf. Table 4-3)
- List of nonmetallic articles brought into chamber (cf. Table 4-4)

Table 4-3 Requirements for Facility

>>>These requirements are to be submitted at K/O meeting to the personnel in charge of operating the facility.<<<

 $6m\phi$ Radiometer Space Chamber

n	ame of test		documentation date : Year Month Day
fa	acility users' name		note
	inner-chamber pressure	Pa or less	
C	discharge-hazardous range	Pa~ Pa	
ons, et	shroud temperature	K or lower	
test conditions, etc.		temperature :	$23 \pm 3^{\circ}C$
test o	environment of clean room	humidity :	30 ~ 60%
	(preparation room)	cleanliness :	ISO7 [ISO14644] (class M5.5, equivalent of class 10,000 [FED- STD-209E])
	test mode	mode :	
	type of test specimen supporting bench	w/ cooling panel • w/o cooling panel	
		6mφ 60W power supply rack -1:	
etc.	power supplies for heat sources	6mφ 2,kW power supply rack -1 :	
ed equipment, etc.		6mφ 2,kW power supply rack -2 :	
quipn		6mφ 3 kW power supply rack -1 :	
sed e	LN ₂ (GN ₂) for test specimen	not use / use	
su ,bc	UPS for test specimen	not use / use	
test method, us	vibration analyzer	not use / use	
test 1		not use / use	
	accelerometer	393M33 :	
		393M12 :	
		393M31 :	
	clean booth	not use / use	
	TQCM	not use / use (qty)	

Table 4-4 List of Nonmetallic Articles Brought into Space Chamber

>>>This list is to be submitted at K/O meeting to the personnel in charge of operating the facility.<<<

name of test:		test period:		~		
component	material	application purpose	used amount	TML	CVCM	track record of use
1. test specimen						
2. jig		I				

Note 1) It is the basic rule that a test specimen and all the jigs are put through baking in another facility before performing a test on them, unless they are true with the cases as below.

• A thermal vacuum test has been already performed on the test specimen and jigs, and the nonexistence of outgas from them is apparent.

• When baking can be proved unnecessary from this list. In that case, never fail to write in the TML and CVCM of the materials.

Note 2) The materials are to accompany their trade names and model numbers.

Note 3) When the used amount of materials is not clear, write in the maximum amount. For silicone grease, for example,

50 g \times 2 would be written. When the amount is just a little, write so.

Note 4) If baking is not necessary, provide the basis for that. ex) The amount is just a little, being in the specified levels of both TML and CVCM.

							(1/3 1	, 												
ch serial#	#	r - 1	_		vessel terminal			ch serial#	#				vessel terminal l							
	#	connector	CH	PIN A	material copper	connector model#	1		#	connector		PIN	material copper	connector model#						
1			1	В	constantan			37			1	B	constantan							
2			2	D	copper			38			2	D	copper							
			_	C F	constantan						_	C F	constantan							
3			3	E	copper constantan			39			3	E	copper constantan							
4			4	Н	copper			40			4	Н	copper							
				G	constantan			10			<u> </u>	G	constantan							
5			5	C J	copper constantan			41			5	<u>с</u> ј	copper constantan							
6			6	K	copper			42			6	Κ	copper							
-	1	C1		R M	constantan copper	AFD56-16-26SN			4	C4	Ŭ	R M	constantan copper	AFD56-16-26SN						
7			7	L	constantan			43			7	L	constantan							
8			8	Ν	copper			44			8	Ν	copper							
				P S	constantan copper							P S	constantan copper							
9			9	T	constantan			45			9	T	constantan							
10			10	U	copper			46			10	U	copper							
				V W	constantan copper								constantan copper							
11			11	X	constantan			47			11	X	constantan							
12			12	Z	copper			48			12	Z	copper							
				Y A	constantan copper							Y A	constantan copper							
13			1	В	constantan			49			1	В	constantan							
14			2	D C	copper constantan			50			2	D C	copper constantan							
15			2	F	copper			F1			2	F	copper							
15			3	E	constantan			51			3	E	constantan							
16			4	H G	copper constantan			52			4	H G	copper constantan							
17			5	С	copper			53			5	С	copper							
1,			,	J K	constantan copper	n AFD56-16-26SN						J K	constantan copper							
18	2	C2	6	R	constantan		SN 55 56	5	C5	6	R	constantan	AFD56-16-26SN							
19	2	C2	7	M	copper			55	5	CS	7	M	copper	A 050 10 205N						
			-	L N	constantan copper						_	 N	constantan copper							
20			8	Р	constantan			56			8	Р	constantan							
21			9	S T	copper constantan	<u>n</u>		57			9	<u>S</u> T	copper constantan							
22			10	U	copper			58			10	U	copper							
			10	V	constantan			50			10	V	constantan							
23			11	W X	copper constantan			59			11	W X	copper constantan							
24			12	Z	copper			60			12	Ζ	copper							
				Y	constantan							Y	constantan							
25			1	A B	copper constantan			61			1	A B	copper constantan							
26			2	D	copper			62			2	D	copper							
			-	C F	constantan copper						_	C F	constantan copper							
27			3	E	constantan			63			3	Ē	constantan							
28			4	H G	copper constantan			64			4	H G	copper constantan							
20			-	c	copper			65			_	c	copper							
29			5	J	constantan			65			5	J	constantan							
30			6	K R	copper constantan			66			6	K R	copper constantan							
31	3	C3	7	M	copper	AFD56-16-26SN		67	6	C6	7	M	copper	AFD56-16-26SN						
51	_	,	L	constantan			- 07			<i>,</i>	L	constantan								
32			8	N P	copper constantan			68			8	N P	copper constantan							
33			9	S	copper			69			9	S	copper							
				T U	constantan copper							<u>т</u> U	constantan copper							
34			10 V	constantan			70			10	V	constantan								
35			11	W X	copper constantan	r can	71			11	W X	copper constantan								
36			12	Z	copper			72			12	Z	copper							
30			12	Y	constantan		J	12			12	Y	constantan							

(1/5)

is sound is concentral interval works and marked in concentral and iteration is and iteratiteration is and iteration is								2/5	, 											
73 8 7 7 1 8 Copper 109 100 100 100 10	ch serial#		1	_	-				ch serial#	4										
1/3 1 8 consistent consistent in 109 1		#	connector				connector model#			#	connector				connector model#					
120 120 120 120 120 3 $\frac{1}{2}$ $$	/3			1					109			1								
75 3 F cooper optimization 76 3 F constantin 4 G	74			2					110			2								
75 4					-							_	-							
77 7	/5			3	E				111			3	Е							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	76			4					112			4								
113 3 3 10 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>442</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>				-					442			_								
1/8 7 C7 1/4 1/4 10 C10 6 R constrainant APD56-16-26SN 80 7 M. copper P constantan APD56-16-26SN 115 10 C10 6 R cocpstrain 81 9 S. copper P constantan 117 11 N cocpstrain 82 10 V. constantan 117 11 N cocpstrain 83 11 V. constantan 118 118 10 V. constantan 84 12 Copper N constantan 112 V. constantan 85 12 Copper 2 copper 12 Copper 1 1 Constantan AFD56-16-26SN 122 12 Copper 1 1 12 Constantan AFD56-16-26SN 122 Copper 1 1 N constantan AFD56-16-26SN 122 Copper Constantan	//			5	J				113			5	J	constantan						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	78			6					114			6								
Image: Second state in the second state in	79	7	C7	7			AFD56-16-26SN		115	10	C10	7			AFD56-16-26SN					
80 8 P constantan 116 116 9 5 copper 81 9 5 copper 111 117 9 5 copper 82 10 V constantan 118 9 5 copper 83 11 X constantan 118 10 V constantan 84 12 Z coopper 118 112 X constantan 86 2 C coopper 122 Z coopper 121 A Coopper 122 V constantan 122 V constantan 86 2 C constantan 122 1 A coopper 123 E constantan 123 E D coopper 90 8 C8 F coopper 126 11 C11 R G constantan 91 V <t< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>				,								_								
81 9 T constantan 82 10 U coper 83 11 W coper 84 12 Coper 12 Coper coper 12 Constantan 12 Constantan 13 E constantan 14 Constantan 15 Constantan 16 Constantan 17 L constantan 18 Constantan 19 S coper 10 V constantan 124 Constantan 125 coper 126 Coper 10 V constantan 10 <t< td=""><td>80</td><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td>116</td><td></td><td></td><td>8</td><td></td><td></td><td></td></t<>	80			8					116			8								
82 10 U copper 83 11 U copper 11 W copper 12 Z copper 13 F copper 14 H copper 15 C constantan 121 122 C 123 F copper 124 H Copper 125 c copper 126 127 L constantan 127 L constantan 128 P constantan 12 C copper <	81			9				11	117			9								
82 10 V constantan 83 11 V constantan 11 X constantan 12 2 copper 12 Y constantan 85 1 A copper 2 Copper 120 2 copper 3 F copper 121 1 A copper 120 0 constantan 122 copper 12 2 copper 88 1 B constantan 122 C constantan 90 8 C8 A Conceptent 123 124 4 H copper 123 124 124 124 125 126 11 C11 6 K copper 190 S copper 10 Constantan AFD56-16-265N 111 C11 6 K copper 1 K constantan AFD56-16-265N 122 C constantan AFD56-16-265N 122 C constantan		-																		
83 11 X constantan 2 000000000000000000000000000000000000	82			10	V				118			10	V							
84 12 Z copper y constantan 85 1 A copper y constantan 86 1 A copper y constantan 87 8 2 D constantan 12 2 D copper y constantan 13 F copper y constantan 123 123 E constantan 124 2 D 124 C Constantan 124 3 F copper y 124 C C constantan 124 123 14 H A 190 K C Constantan 124 124 125 126 11 127 10 V constantan 4FD56-16-265N 127 10 V constantan 10 V constantan 122 Copper 130 122 Copper 11 X constantan 122	83			11					119			11								
85 1 A cooper cooper 12 86 1 A cooper 2 1 A cooper 2 1 A cooper 3 121 1 A A cooper 2 C constantan 3 F cooper 4 A Cooper 4 A Cooper 4 C C constantan 3 F cooper 4 A Cooper 4 C C constantan 3 F cooper 4 A Cooper 4 A Cooper 4 A Cooper 5 C Cooper 4 A A Cooper 4 A A Cooper 4 A A Cooper 4 A Cooper 4 A Cooper 4 A A Cooper 4 A Cooper 4 <td>0/</td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>120</td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td>	0/			10					120			12								
85 1 B Constantan 86 2 D copper 3 F constantan 3 F constantan 3 F constantan 4 H copper 5 C constantan 6 K constantan 7 M constantan 90 8 C8 R constantan 6 K constantan 10 U copper 91 S constantan 92 P constantan 93 P constantan 94 S constantan 95 T constantan 11 W copper 12 C copper 131 12 Constantan 12 C constantan 12 C constantan 12 C constantan	04			12					120			12								
86 87 87 3 E constantan 3 F constantan 4 H copper 5 C constantan 90 8 C8 C constantan 91 5 C copper 122 121 123 124 124 125 90 8 C8 C constantan 91 6 R constantan 92 9 S constantan 93 9 S copper 94 0 Constantan 95 1 constantan 94 0 Constantan 95 1 constantan 96 12 Z copper 11 W constantan 96 12 Z constantan 12 Z constantan 12 Z constantan	85			1					121			1								
	86	1		2		copper			122			2		copper						
87 3 E constantan 4 H cooper 4 123 88 4 H cooper 5 constantan 6 124 124 124 90 8 C8 C Constantan 6 K cooper 7 126 11 C11 C11 C11 C Constantan 6 K cooper Constantan 7 K constantan 6 K cooper Constantan 7 L Constantan 6 K cooper Constantan 7 L Constantan 6 K Cooper Constantan 7 L Constantan 6 K Cooper 7 K Cooper 7 K Cooper 7 K Cooper 7 K Cooper 7 K Cooper 7 K Constantan 7 L C C C C C <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-				1														
88 4 G constantan 89 90 8 C8 C6 Constantan 5 C copper 125 1 constantan 6 K copper 126 11 C11 5 C copper 126 11 C11 5 C copper 1 Constantan 6 K copper 1 Constantan 6 K copper 1 Constantan 7 M copper 1 Constantan 7 M copper 1 Constantan 9 S copper 1 Constantan 1 1 W copper 1 1 N constantan 1 U copper 1 1 N constantan 1 U copper 1 1 N constantan 1 U copper 1 1 N constantan 1 1 U copper 1 1 N constantan <td>87</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>123</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td>	87			3					123			3								
89 90 8 C8 5 c cooper R AFD56-16-26SN 11 5 c constantan R AFD56-16-26SN 91 9 6 K constantan R AFD56-16-26SN 11 C11 7 K constantan R 0 X Constantan R 11 W Cooper V 131 132 132 132 132 1 A Cooper C C Constantan R 133 14 14 14 14 X Constantan R 12 C C C C C C C C C C C <td>88</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td>124</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td>	88			4					124			4								
9098C8 $\begin{bmatrix} 1 \\ K \\ copper \\ constantan \\ 7 \\ M \\ copper \\ 1 \\ constantan \\ 8 \\ N \\ copper \\ 1 \\ constantan \\ 9 \\ S \\ copper \\ 1 \\ constantan \\ 9 \\ S \\ copper \\ 1 \\ constantan \\ 10 \\ V \\ constantan \\ 10 \\ V \\ constantan \\ 11 \\ W \\ copper \\ 12 \\ Z \\ copper \\ 12 \\ 120 \\ 130 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 133 \\ 132 \\ 133 \\ 134 \\ 132 \\ 133 \\ 134 \\ 132 \\ 134 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 136 \\ 137 \\ 138 \\ 136 \\ 137 \\ 102 \\ 12 \\ 2 \\ 0 \\ constantan \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	80			E					125			E								
90 8 C8 6 R constantan 91 8 C8 6 R constantan AFD56-16-26SN 11 C11 6 R copper AFD56-16-26SN 127 11 C11 6 R copper AFD56-16-26SN 127 128 11 C11 7 M copper AFD56-16-26SN 127 128 11 C11 8 N copper 1 Copper 1 Copper 1 Copper 1 Copper 1 0 Copper 1 0 Copper 1 0	69		C8	5	-				125			5	-							
918C87Mcopper LAPD36-16-26SN11C117Mcopper LAPD36-16-26SN9297Lconstantan 8Ncopper1288Ncopper 95copper 11289Scopper 11289Scopper 11289Scopper 11289Scopper 11281299Scopper 110Uconstantan 19Scopper 110Uconstantan10Uconstantan10Uconstantan11Wconstantan11Wcopper 111Wconstantan111111111111<	90			6					126		614	6								
929292 1 1 1 2 128 128 128 128 128 128 128 129 3 8 N $Copper$ 939 5 $Copper$ 10 U $copper$ 120 129 9 5 $Copper$ 94 10 U $copper$ 130 131 10 U $copper$ 95 11 W $constantan$ 131 11 W $copper$ 96 12 Z $copper$ 132 11 W $copper$ 97 12 Z $Copper$ 132 122 Z $Copper$ 98 2 C C C C C C R R 99 2 C C C C R R R R 101 2 2 C C C R R R 99 3 6 K $Copper$ R R R 101 10 10 10 10 1137 138 12 12 2 $Copper$ 103 9 5 $Copper$ 133 12 12 C $Constantan$ 104 9 5 $Copper$ 137 138 12 $C12$ $Constantan$ 105 12 C C R $Constantan$ 140 141 141 106 11 W $Copper$ 143 <t< td=""><td>91</td><td>8</td><td>7</td><td>М</td><td>copper</td><td rowspan="4">r tan r tan</td><td></td><td>127</td><td>11</td><td>C11</td><td>7</td><td>М</td><td>copper</td><td>AFD56-16-26SN</td></t<>	91	8		7	М	copper	r tan r tan		127	11	C11	7	М	copper	AFD56-16-26SN					
928Pconstantan939Scopper9410Ucopper10Ucopper11Wcopper12Zconstantan9612C12Zcopper13113114X15116V17Constantan181219110V11W12Z13213113313214A15C16K17C18Constantan19131001311W101131029103910414105131061410711108121091210012101121021310314410410512106121071081210812109100100101102103104105105105105105105105105105105105106107 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>				_								_								
93 9 T constantan 94 10 U copper 10 V constantan 95 11 W copper 11 W copper 12 Z copper 11 W copper 12 Z copper 12 Y constantan 12 Z copper 131 132 12 12 Z copper 132 12 Y 14 A copper 15 C constantan 100 Y constantan 110 A Copper 133 F constantan 14 H copper 15 C copper 16 K copper 136 137 137 138 101 Y constantan 102 9 S copper 1 K constantan	92			8	Р				128			8	Р							
9410Ucopper V13010Ucopper V100Ucopper V100Ucopper V100Ucopper V111Ucopper V111111Ucopper V111111Ucopper V111111Ucopper V111111Ucopper V111Ucopper V111111Ucopper V111111Ucopper V111111Ucopper V111Ucopper V111111Ucopper V111Ucopper V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111Uconstantan V111UConstantan V111UConstantan V111UConstantan V111UConstantan V111UConstantan V111UConstantan V111UConstantan V111UConstantan V111UConstantan V111UConstantan V111UConstantan V111 <td>93</td> <td></td> <td></td> <td>9</td> <td></td> <td></td> <td></td> <td>129</td> <td></td> <td rowspan="3"></td> <td>9</td> <td></td> <td></td> <td></td>	93			9					129			9								
95 V $Constantancopper11Wcopperconstantan9612ZcopperY13113111Wconstantan29712ZcopperB13213212ZcopperConstantan982DcopperCDcopperC133AACoopperC983FcopperCCConstantanCCCCCC993FcopperCCCCCCCCC1004HCCCCCCCCCC101GCCCCCCCCCCC101GCCCCCCCCCCC101GCCCCCCCCCCCC101GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC<$	0/			10					130			10								
95 11 X constantan 96 12 Z copper 12 Y constantan 97 1 A copper 98 2 D copper 100 2 C constantan 101 3 F copper 102 9 C9 C9 C constantan 101 4 H copper 133 134 101 5 C constantan 135 3 F copper 101 6 K copper 136 3 F copper 103 9 C9 C9 A C0 constantan 137 138 12 C12 A A Copper 103 9 7 L constantan 140 141 141 8 P constantan 8 P constantan 9 S copper 10 V constantan 142 144 142 12 C	94			10					150			10								
96 12 Z copper Y 132 12 Z copper Y 132 97 1 A copper 133 133 133 133 133 133 133 133 133 133 133 133 133 134 133 134 134 134 134 135 135 135 135 136 135 135 136 136 137 136 137 136 137 136 137 137 137 137 138 12 C12 C12 C constantan 4 H copper 137 137 137 137 137 137 138 12 C12 C12 C12 C constantan 4 H copper 130 12 C12 C12 C Constantan 137 138 12 C12 C12 C Constantan 139 12 C12 C C00 C00 <	95			11					131			11								
971Acopper982Dcopper982Dcopper1003Fconstantan3Fconstantan3Fconstantan3Fconstantan1004H4Hcopper5Cconstantan11361361015C5Jconstantan6Kcopper7Lconstantan1049S9Scopper1050copper10611W10711W10812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z1081210812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z108121081210812108121081	96	1		12					132			12		copper						
97 1 B constantan 98 2 D copper 98 3 F copper 100 3 F copper 101 3 F copper 101 4 H copper 101 5 C copper 101 6 K copper 103 7 M copper 103 7 M copper 103 9 S copper 103 9 S copper 103 10 V constantan 104 9 S copper 105 9 S copper 106 11 W copper 107 11 W copper 108 12 Z copper 108 12 Z copper																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	97			1					133			1								
99 3 Fcopper E135 135 3 Fcopper E 3 Fcopper E 4 4 4 $20per$ 4 4 4 $20per$ 4 6 6 R $constantan1031047MCopper140141141141141141114466Rconstantan7Lconstantan11$	98			2					134			2								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00			3					125			2								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	55			5					155			5								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100			4					136			4								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	101	1		5	С	copper			137			5								
1029C96Rconstantan copper1037Mcopper1047Lconstantan copper1048Ncopper1059Scopper9Scopper9Scopper1060Copper10711W10812Z10812Z10812Z10812Z10812Z10812Z10812Z10812Z10912Copper10812Z1001210112102144103144104144													-							
1037Mcopper1397Mcopper1048Ncopper1408Ncopper1049Scopper1408Ncopper1059Scopper1419Scopper10610Ucopper14210Ucopper10711Wcopper14311Wcopper10812Zcopper14412Zcopper	102	9	C9	6	R		AFD56-16-26SN		138	12	C12	6	R		AFD56-16-26SN					
1048Ncopper1059 \overline{S} copper1408 \overline{N} copper1059 \overline{S} copper1419 \overline{S} copper10610 \overline{U} copper14210 \overline{U} copper10711 \overline{W} copper14311 \overline{W} copper10812 \overline{Z} copper14412 \overline{Z} copper	103		05	7			1 20010 20011		139	12	012	7			1 200 10 2001					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	104			0					140			0								
103 9 Tconstantan 141 9 Tconstantan 106 10 U copper 142 10 U copper 107 11 W copper 143 11 W copper 108 12 Z copper 144 12 Z copper	104	-		0					140			0								
106 10 U copper 142 10 U copper 107 11 W copper 143 11 W copper 108 12 Z copper 144 12 Z copper	105			9					141			9								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	106]		10	U	copper	tantan pper tantan pper tantan pper	n 142	per		-						10	U	copper	
107 11 X constantan 108 12 Z copper 143 11 X constantan		1																		
	107	l		11	Х	constantan			143			11	Х	constantan	tan					
	108			12				144			12									
						sonstantari		J	ļ					sensumun						

(2/5)

r							3/5	/													
ch serial#	#	con connector	r	s on inner PIN	-vessel terminal material	boards side connector model#		ch serial#	#	con connector	-	s on inner- PIN	vessel terminal I material	connector model#							
145		conneccor	1	A	copper			181	"	connector	1	A	copper								
145			-	B	constantan			101			-	В	constantan								
146			2	D C	copper constantan			182			2	D C	copper constantan								
147	1		3	F	copper			183			3	F	copper								
	-			E	constantan copper						<u> </u>	E H	constantan copper								
148			4	G	constantan			184			4	G	constantan								
149			5	c J	copper constantan			185			5	c J	copper constantan								
150			6	K	copper			186			6	ĸ	copper								
150	13	C13	0	R	constantan	AFD56-16-26SN		100	16	C16	0	R	constantan	AFD56-16-26SN							
151			7	M L	copper constantan			187			7	M	copper constantan								
152			8	N	copper			188			8	N	copper								
	1			P S	constantan copper							P S	constantan copper								
153			9	Т	constantan			189			9	Т	constantan								
154			10	U V	copper constantan			190			10	U V	copper constantan								
155	1		11	W	copper			191			11	W	copper								
				X Z	constantan copper							X Z	constantan copper								
156			12	Y	constantan			192			12	Y	constantan								
157			1	A B	copper constantan			193			1	A B	copper constantan								
158	1		2	D	copper			194			2	D	copper								
150	-			C F	constantan copper			191				C F	constantan copper								
159			3	E	constantan			195			3	E	constantan	_							
160			4	H G	copper constantan			196			4	H G	copper constantan								
161	1		5	c	copper			197			5	c	copper								
101	-	-		J K	constantan copper			157				J K	constantan copper								
162	14	C14	6	R	constantan	AFD56-16-26SN		198	17	C17	6	R	constantan	AFD56-16-26SN							
163	1,	011	7	M L	copper constantan	r tan r tan		199	17	017	7	M L	copper constantan	A 050 10 205N							
164	1		8	Ν	copper			200			8	Ν	copper								
101				P S	constantan copper			200				P S	constantan copper								
165			9	T	constantan			201			9	T	constantan								
166			10	UV	copper			202			10	U V	copper								
167			11	W	constantan copper			203			11	Ŵ	constantan copper								
107				X Z	constantan			205			11	X Z	constantan copper								
168			12	Y	copper constantan			204			12	Y	constantan								
169			1	A B	copper constantan			205			1	A B	copper								
170			2	D	copper			206			2	D	constantan copper								
170	-			C F	constantan copper			200				C F	constantan copper								
171			3	E	constantan			207			3	E	constantan								
172			4	H G	copper constantan			208			4	H G	copper constantan								
173			5	c	copper			209			5	c c	copper								
175				J K	constantan copper			209				J K	constantan copper								
174	15	C15	6	R	constantan	AFD56-16-26SN		210	18	C18	6	R	constantan	AFD56-16-26SN							
175	15	15 C15 -	7	M L	copper constantan	A D30 10 203N		211	10	C10	7	M L	copper constantan	A 050 10 205N							
176			8	N	copper			212			8	N	copper								
170	-			P S	constantan			~ ~ ~ ~				P S	constantan								
177			9	T	copper constantan			213			9	T	copper constantan								
178			10	U V	copper			214			10	U V	copper								
179	1		11	W	copper	nstantan copper nstantan copper 215	215		1	11	W	constantan copper									
				X Z	constantan						X Z	constantan	tan								
180			12	Y	copper			216			12	Y	copper constantan								

(3/5)

							4/5	, 						
ch serial#		1			-vessel terminal bo			ch serial#			-		-vessel terminal bo	
	#	connector	СН	PIN	material COpper	connector model#			#	connector	CH	PIN	material copper	connector model#
217			1	B	constantan			253			1	A B	constantan	
210			2	D	copper			254			2	D	copper	
218			2	С	constantan			254			2	С	constantan	
219			3	F	copper			255			3	F	copper	
				E	constantan copper							E H	constantan copper	
220			4	G	constantan			256			4	G	constantan	
221			5	С	copper			257			5	С	copper	
~~~			5	J	constantan			237				J	constantan	
222			6	K R	copper constantan			258			6	K R	copper constantan	
	19	C19	_	M	copper	AFD56-16-26SN			22	C22	_	M	copper	AFD56-16-26SN
223			7	L	constantan			259			7	L	constantan	
224			8	Ν	copper			260			8	Ν	copper	
				P S	constantan copper							P S	constantan copper	
225			9	T	constantan			261			9	T	constantan	
226			10	U	copper			262			10	U	copper	
220			10	V	constantan			202			10	V	constantan	
227			11	W X	copper constantan	_		263			11	W X	copper constantan	
				Z	copper							Z	copper	
228			12	Y	constantan			264			12	Y	constantan	
229			1	А	copper			265			1	А	copper	
-				B	constantan copper							B	constantan copper	
230			2	C	constantan			266			2	C	constantan	
221			2	F	copper			267			3	F	copper	
231			3	Е	constantan			267			3	Е	constantan	
232			4	H	copper			268			4	H	copper	
				G	constantan copper	┨ ┣						G	constantan copper	
233			5	J	constantan	AFD56-16-26SN		269			5	J	constantan	
234			6	K	copper			270			6	K	copper	
	20	C20	-	R	constantan				23	C23	-	R	constantan	AFD56-16-26SN
235			7	M	copper constantan			271			7	M	copper constantan	
226			8	N	copper			272			8	N	copper	
236			0	Р	constantan			272			0	Р	constantan	
237			9	S	copper			273			9	S	copper	
				T U	constantan copper							T U	constantan copper	
238			10	V	constantan			274			10	V	constantan	
239			11	W	copper			275			11	W	copper	
				X Z	constantan							X	constantan	
240			12	Y	copper constantan			276			12	Z	copper constantan	
241			1	A	copper			277			1	A	copper	
241			1	В	constantan			277			1	В	constantan	
242			2	D C	copper constantan			278			2	D C	copper constantan	
			-	F	copper						_	F	copper	
243			3	E	constantan			279			3	E	constantan	
244			4	Н	copper			280			4	Н	copper	
<u> </u>				G	constantan copper							G	constantan copper	
245			5	C J	constantan			281			5	C J	constantan	
246			6	K	copper			282			6	K	copper	
2 10	21	C21		R	constantan	AFD56-16-26SN		202	24	C24		R	constantan	AFD56-16-26SN
247			7	M L	copper constantan			283			7	M L	copper constantan	
240			_	N	copper			20.4			_	N	copper	
248			8	Р	constantan			284			8	Р	constantan	
249			9	S	copper			285			9	S	copper	
			<u> </u>	T U	constantan copper							T U	constantan copper	
250			10	V	constantan	per	286			10	V	constantan	_	
251			11	W	copper		287			11	W	copper		
2.31			**	X	constantan			207			**	X	constantan	
252			12	Z	copper constantan			288			12	Z	copper constantan	
		I	L		sonocaricari		J	L	L	I	L		sonscancart	

(4/5)

connector model#

AFD56-16-26SN

connectors on inner-vessel terminal boards side

material

copper

constantan

copper

constantan

copper

constantan

copper

constantan copper

constantan

copper

constantan

copper

constantan

copper

constantan

copper

constantan

copper

constantan

copper

constantan

copper

constantan

СН PIN

2

3 Е

4 G

5 С

6 R

7 L

8 Ρ

9

10

11 Х

12

C28

А 1

В

D C

F

Н

J Κ

М

Ν

S

Т

U

V

W

Z Y

connector

ch serial#	#	connector	CH	PIN	-vessel terminal I material	connector model#	ch serial#	#										
289			1	A	copper		325											
269			1	В	constantan		325											
290			2	D	copper		326											
			_	C	constantan													
291			3	F E	copper constantan		327											
202				Н	copper		220											
292			4	G	constantan		328											
293			5	с	copper		329											
250				J	constantan		525											
294			6	K R	copper		330											
	25	C25	_	M	constantan copper	AFD56-16-26SN		28										
295			7	L	constantan		331											
296			8	Ν	copper		332											
				P	constantan													
297			9	S T	copper		333											
				U	constantan copper													
298			10	V	constantan		334											
299			11	W	copper		335											
299				X	constantan		555											
300			12	Z	copper		336											
			$\vdash$	Y A	constantan copper													
301			1	B	constantan													
302			2	D	copper													
502			2	С	constantan													
303			3	F	copper													
				E H	constantan copper													
304			4	G	constantan													
305			5	с	copper													
505				J	constantan													
306			6	K	copper													
	26	C26	_	R M	constantan copper	AFD56-16-26SN												
307			7	L	constantan													
308			8	Ν	copper													
500			Ŭ	Р	constantan													
309			9	S	copper													
														T U	constantan copper			
310											10	V	constantan					
311									11	W	copper							
511			11	Х	constantan													
312			12	Z	copper													
			$\vdash$	Y A	constantan copper													
313			1	B	constantan													
314			2	D	copper													
511			Ĺ	C	constantan													
315			3	F	copper													
				E H	constantan copper													
316			4	G	constantan													
317			5	С	copper													
51/			Ľ	J	constantan													
318			6	K	copper													
	27	C27		R M	constantan copper	AFD30-10-205N												
319			7	L	constantan													
320			8 N copper															
520			0	Р	constantan													
321			9	S T	copper													
			$\vdash$	T U	constantan copper													
322			10	V	constantan													
323			11	W	copper													
525				X	constantan													
			12	Z Y	copper constantan													
324																		

## Table A-1 Correspondence Table of Channels between Terminal Boards inside Vessel and Data Loggers

(5/5)